7 research outputs found

    Performance of Electrospun Polyvinylidene Fluoride Nanofibrous Membrane in Air Filtration

    No full text
    Polyvinylidene fluoride (PVDF) fibrous membranes with fiber diameter from nanoscale to microscale were prepared by electrospinning. The structural parameters of PVDF fibrous membrane in terms of fiber diameter, pore size and its distribution, porosity or packing density, thickness, and areal weight were tested. The relationship between solution concentration and structural parameters of fibrous membrane was analyzed. The filtration performance of PVDF fibrous membrane in terms of air permeability and filtration efficiency was evaluated. The results demonstrated that the higher solution concentration led to a larger fiber diameter and higher areal weight of fibrous membrane. However, no regular change was found in thickness, porosity, or pore size of fibrous membrane under different solution concentrations. The air permeability and filtration efficiency of fibrous membrane had positive correlations with pore size. The experimental results of filtration efficiency were compared with the predicted values from current theoretical models based on single fiber filtration efficiency. However, the predicted values did not have a good agreement with experimental results since the fiber diameter was in nanoscale and the ratio of particle size to fiber diameter was much larger than the value that the theoretical model requires

    Performance of Electrospun Polyvinylidene Fluoride Nanofibrous Membrane in Air Filtration

    No full text
    Polyvinylidene fluoride (PVDF) fibrous membranes with fiber diameter from nanoscale to microscale were prepared by electrospinning. The structural parameters of PVDF fibrous membrane in terms of fiber diameter, pore size and its distribution, porosity or packing density, thickness, and areal weight were tested. The relationship between solution concentration and structural parameters of fibrous membrane was analyzed. The filtration performance of PVDF fibrous membrane in terms of air permeability and filtration efficiency was evaluated. The results demonstrated that the higher solution concentration led to a larger fiber diameter and higher areal weight of fibrous membrane. However, no regular change was found in thickness, porosity, or pore size of fibrous membrane under different solution concentrations. The air permeability and filtration efficiency of fibrous membrane had positive correlations with pore size. The experimental results of filtration efficiency were compared with the predicted values from current theoretical models based on single fiber filtration efficiency. However, the predicted values did not have a good agreement with experimental results since the fiber diameter was in nanoscale and the ratio of particle size to fiber diameter was much larger than the value that the theoretical model requires

    Electrical detection of mobile skyrmions with 100% tunneling magnetoresistance in a racetrack-like device

    No full text
    Abstract Magnetic skyrmions are topological spin textures that are regarded as promising information carriers for next-generation spintronic memory and computing devices. For practical applications, their deterministic generation, manipulation, and efficient detection are the most critical aspects. Although the generation and manipulation of skyrmions have been extensively studied, efficient electrical detection of mobile skyrmions by using techniques that are compatible with modern magnetic memory technology, remains to be adequately addressed. Here, through integrating magnetic multilayers that host nanoscale skyrmions, together with the magnetic tunnel junctions (MTJ), we demonstrate the electrical detection of skyrmions by using the tunneling magnetoresistance (TMR) effect with a TMR ratio that reaches over 100% at room temperature. By building prototype three-terminal racetrack-like devices, we further show the electrical detection of mobile skyrmions by recording the time-dependent TMR ratios. Along with many recent developments, our results could advance the development of skyrmionic memory and logic devices
    corecore