42 research outputs found
Legacy Metal Contaminants and Excess Nutrients in Low Flow Estuarine Embayments Alter Composition and Function of Benthic Bacterial Communities.
Coastal systems such as estuaries are threatened by multiple anthropogenic stressors worldwide. However, how these stressors and estuarine hydrology shape benthic bacterial communities and their functions remains poorly known. Here, we surveyed sediment bacterial communities in poorly flushed embayments and well flushed channels in Sydney Harbour, Australia, using 16S rRNA gene sequencing. Sediment samples were collected monthly during the Austral summer-autumn 2014 at increasing distance from a large storm drain in each channel and embayment. Bacterial communities differed significantly between sites that varied in proximity to storm drains, with a gradient of change apparent for sites within embayments. We explored this pattern for embayment sites with analysis of RNA-Seq gene expression patterns and found higher expression of multiple genes involved in bacterial stress response far from storm drains, suggesting that bacterial communities close to storm drains may be more tolerant of localised anthropogenic stressors. Several bacterial groups also differed close to and far from storm drains, suggesting their potential utility as bioindicators to monitor contaminants in estuarine sediments. Overall, our study provides useful insights into changes in the composition and functioning of benthic bacterial communities as a result of multiple anthropogenic stressors in differing hydrological conditions
A novel real-world ecotoxicological dataset of pelagic microbial community responses to wastewater.
Real-world observational datasets that record and quantify pressure-stressor-response linkages between effluent discharges and natural aquatic systems are rare. With global wastewater volumes increasing at unprecedented rates, it is urgent that the present dataset is available to provide the necessary information about microbial community structure and functioning. Field studies were performed at two time-points in the Austral summer. Single-species and microbial community whole effluent toxicity (WET) testing was performed at a complete range of effluent concentrations and two salinities, with accompanying environmental data to provide new insights into nutrient and organic matter cycling, and to identify ecotoxicological tipping points. The two salinity regimes were chosen to investigate future scenarios based on a predicted salinity increase at the study site, typical of coastal regions with rising sea levels globally. Flow cytometry, amplicon sequencing of 16S and 18S rRNA genes and micro-fluidic quantitative polymerase-chain reactions (MFQPCR) were used to determine chlorophyll-a and total bacterial cell numbers and size, as well as taxonomic and functional diversity of pelagic microbial communities. This strong pilot dataset could be replicated in other regions globally and would be of high value to scientists and engineers to support the next advances in microbial ecotoxicology, environmental biomonitoring and estuarine water quality modelling
Molecular pathology of human prion disease
Human prion diseases are associated with a range of clinical presentations and are classified by both clinicopathological syndrome and aetiology with sub-classification according to molecular criteria. Considerable experimental evidence suggests that phenotypic diversity in human prion disease relates in significant part to the existence of distinct human prion strains encoded by abnormal PrP isoforms with differing physicochemical properties. To date, however, the conformational repertoire of pathological isoforms of wild-type human PrP and the various forms of mutant human PrP has not been fully defined. Efforts to produce a unified international classification of human prion disease are still ongoing. The ability of genetic background to influence prion strain selection together with knowledge of numerous other factors that may influence clinical and neuropathological presentation strongly emphasises the requirement to identify distinct human prion strains in appropriate transgenic models, where host genetic variability and other modifiers of phenotype are removed. Defining how many human prion strains exist allied with transgenic modelling of potentially zoonotic prion strains will inform on how many human infections may have an animal origin. Understanding these relationships will have direct translation to protecting public health
American Radical Economists in Mao’s China: From Hopes to Disillusionment
American radical economists in the 1960s perceived China under Maoism as an important experiment in creating a new society, aspects of which they hoped could serve as a model for the developing world. But the knowledge of ‘actually existing Maoism’ was very limited due to the mutual isolation between China and the US. This paper analyses the First Friendship Delegation of American Radical Political Economists (FFDARPE) to the People’s Republic of China in 1972, consisting mainly of Union for Radical Political Economics (URPE) members, which was the first visit of a group of American economists to China since 1949. Based on interviews with trip participants as well as archival and published material, this paper studies what we can learn about the engagement with Maoism by American radical economists from their dialogues with Chinese hosts, from their on-the-ground observations, and their reflection upon return. We show how the visitors’ own ideas conflicted and intersected with their perception of the Maoist practice on gender relations; workers’ management and life in the communes. We also shed light on the diverging conceptions of the role for economic expertise between URPE and late Maoism. As the first in-depth study on the FFDARPE we provide rich empirical insights into an ice-breaking event in the larger process of normalization in the Sino-U.S relations, that ultimately led to the disillusionment of the Left with China
Tax4Fun2: Prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences
Background: Sequencing of 16S rRNA genes has become a powerful technique to study microbial communities and their responses towards changing environmental conditions in various ecosystems. Several tools have been developed for the prediction of functional profiles from 16S rRNA gene sequencing data, because numerous questions in ecosystem ecology require knowledge of community functions in addition to taxonomic composition. However, the accuracy of these tools relies on functional information derived from genomes available in public databases, which are often not representative of the microorganisms present in the studied ecosystem. In addition, there is also a lack of tools to predict functional gene redundancy in microbial communities. Results: To address these challenges, we developed Tax4Fun2, an R package for the prediction of functional profiles and functional gene redundancies of prokaryotic communities from 16S rRNA gene sequences. We demonstrate that functional profiles predicted by Tax4Fun2 are highly correlated to functional profiles derived from metagenomes of the same samples. We further show that Tax4Fun2 has higher accuracies than PICRUSt and Tax4Fun. By incorporating user-defined, habitat-specific genomic information, the accuracy and robustness of predicted functional profiles is substantially enhanced. In addition, functional gene redundancies predicted with Tax4Fun2 are highly correlated to functional gene redundancies determined for simulated microbial communities. Conclusions: Tax4Fun2 provides researchers with a unique tool to predict and investigate functional profiles of prokaryotic communities based on 16S rRNA gene sequencing data. It is easy-to-use, platform-independent and highly memory-efficient, thus enabling researchers without extensive bioinformatics knowledge or access to high-performance clusters to predict functional profiles. Another unique feature of Tax4Fun2 is that it allows researchers to calculate the redundancy of specific functions, which is a potentially important measure of how resilient a community will be to environmental perturbation. Tax4Fun2 is implemented in R and freely available at https://github.com/bwemheu/Tax4Fun2
Linking Compositional and Functional Predictions to Decipher the Biogeochemical Significance in DFAA Turnover of Abundant Bacterioplankton Lineages in the North Sea.
Deciphering the ecological traits of abundant marine bacteria is a major challenge in marine microbial ecology. In the current study, we linked compositional and functional predictions to elucidate such traits for abundant bacterioplankton lineages in the North Sea. For this purpose, we investigated entire and active bacterioplankton composition along a transect ranging from the German Bight to the northern North Sea by pyrotag sequencing of bacterial 16S rRNA genes and transcripts. Functional profiles were inferred from 16S rRNA data using Tax4Fun. Bacterioplankton communities were dominated by well-known marine lineages including clusters/genera that are affiliated with the Roseobacter group and the Flavobacteria. Variations in community composition and function were significantly explained by measured environmental and microbial properties. Turnover of dissolved free amino acids (DFAA) showed the strongest correlation to community composition and function. We applied multinomial models, which enabled us to identify bacterial lineages involved in DFAA turnover. For instance, the genus Planktomarina was more abundant at higher DFAA turnover rates, suggesting its vital role in amino acid degradation. Functional predictions further indicated that Planktomarina is involved in leucine and isoleucine degradation. Overall, our results provide novel insights into the biogeochemical significance of abundant bacterioplankton lineages in the North Sea
Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests
Soil bacteria provide a large range of ecosystem services such as nutrient cycling. Despite their important role in soil systems, compositional and functional responses of bacterial communities to different land use and management regimes are not fully understood. Here, we assessed soil bacterial communities in 150 forest and 150 grassland soils derived from three German regions by pyrotag sequencing of 16S rRNA genes. Land use type (forest and grassland) and soil edaphic properties strongly affected bacterial community structure and function, whereas management regime had a minor effect. In addition, a separation of soil bacterial communities by sampling region was encountered. Soil pH was the best predictor for bacterial community structure, diversity and function. The application of multinomial log-linear models revealed distinct responses of abundant bacterial groups towards pH. Predicted functional profiles revealed that differences in land use not only select for distinct bacterial populations but also for specific functional traits. The combination of 16S rRNA data and corresponding functional profiles provided comprehensive insights into compositional and functional adaptations to changing environmental conditions associated with differences in land use and management
La cryoconservation des races porcines menacées de disparition. La situation en France, en Allemagne, en Italie et en Espagne.
National audienc