186 research outputs found

    The posterior communicating arteries in the patients with sudden deafness: evaluation with magnetic resonance imaging (MRA)

    Get PDF
    BACKGROUND: A strong association was suggested between a non-functioning posterior communicating artery (Pcom) of the circle of Willis and sudden deafness (SD). The purpose of this study was to determine the rate of depiction of Pcom on magnetic resonance angiography (MRA) in patients with SD. METHODS: Sixteen patients with SD (47.7 +/- 13.3 years; range, 24 – 76 years; nine males) were evaluated with intracranial MRA as well as magnetic resonance imaging (MRI) of the head. The depiction of Pcom on MRA was correlated with the laterality of SD. One hundred twenty-eight controls (49.1 +/- 8.4 years; range, 22 – 66 years; 87 male) were selected from neurologically normal subjects who underwent MR examinations as a part of an annual medical check-up in our hospital. RESULTS: Four (25%) of 16 SD patients had bilateral Pcom on MRA, four patients had unilateral Pcom and eight patients had bilaterally absent Pcom These results were not significantly different from the controls (p = 0.96). In 6 (37.5 %) of 16 SD patients, the ipsilateral Pcom was present on MRA, and 104 (40.6%) of 256 Pcom were present in 128 normal controls (p = 0.81). CONCLUSION: Since there was no link between the occurrence of SD and the absence of the ipsilateral Pcom, our results cannot support the hypothesis that the absence of Pcom may be a risk factor for the occurrence of SD

    The impact of paratracheal lymph node metastasis in squamous cell carcinoma of the hypopharynx

    Get PDF
    The aim of this study was to analyze the prevalence and prognostic importance of paratracheal lymph nodes in squamous cell carcinoma of the hypopharynx. A retrospective review of 64 previously untreated patients with squamous cell carcinoma (SCC) of the hypopharynx that underwent surgery was performed. Ipsilateral paratracheal lymph node metastases occurred in 22% (14 out of 64) and the mean number of paratracheal lymph nodes dissected per side was 2.3 (range 1–6). Contralateral paratracheal lymph node metastases were present in 2% (1 out of 42). Sixty-seven percent with postcricoid SCC and 22% with pyriform sinus SCC developed clinical node-positive ipsilateral paratracheal lymph node metastases, whereas 11% with posterior pharyngeal wall SCC developed paratracheal metastases. There was a significant correlation between paratracheal lymph node metastasis and cervical metastasis (pΒ =Β 0.005), and the primary tumor site (postcricoid, 57.1%; pyriform sinus, 20.0%; posterior pharyngeal wall, 8.3%) (pΒ =Β 0.039). Patients with no evidence of paratracheal lymph node metastasis may have a survival benefit (5-year disease-specific survival rate, 60 vs. 29%). However, this result did not reach statistical significance (pΒ =Β 0.071). The patients with SCC of the postcricoid and/or pyriform sinus were at risk for ipsilateral paratracheal lymph node metastasis; furthermore, patients with paratracheal node metastasis had a high frequency of cervical metastasis and a poorer prognosis. Therefore, routine ipsilateral paratracheal node dissection is recommended during the surgical treatment of patients with SCC of the postcricoid and/or pyriform sinus with clinical node metastases

    IQGAP1 Interacts with Components of the Slit Diaphragm Complex in Podocytes and Is Involved in Podocyte Migration and Permeability In Vitro

    Get PDF
    IQGAP1 is a scaffold protein that interacts with proteins of the cytoskeleton and the intercellular adhesion complex. In podocytes, IQGAP1 is associated with nephrin in the glomerular slit diaphragm (SD) complex, but its role remains ill-defined. In this work, we investigated the interaction of IQGAP1 with the cytoskeleton and SD proteins in podocytes in culture, and its role in podocyte migration and permeability. Expression, localization, and interactions between IQGAP1 and SD or cytoskeletal proteins were determined in cultured human podocytes by Western blot (WB), immunocytolocalization (IC), immunoprecipitation (IP), and In situ Proximity Ligation assay (IsPL). Involvement of IQGAP1 in migration and permeability was also assessed. IQGAP1 expression in normal kidney biopsies was studied by immunohistochemistry. IQGAP1 expression by podocytes increased during their in vitro differentiation. IC, IP, and IsPL experiments showed colocalizations and/or interactions between IQGAP1 and SD proteins (nephrin, MAGI-1, CD2AP, NCK 1/2, podocin), podocalyxin, and cytoskeletal proteins (Ξ±-actinin-4). IQGAP1 silencing decreased podocyte migration and increased the permeability of a podocyte layer. Immunohistochemistry on normal human kidney confirmed IQGAP1 expression in podocytes and distal tubular epithelial cells and also showed an expression in glomerular parietal epithelial cells. In summary, our results suggest that IQGAP1, through its interaction with components of SD and cytoskeletal proteins, is involved in podocyte barrier properties

    Protocol for Fit Bodies, Fine Minds: a randomized controlled trial on the affect of exercise and cognitive training on cognitive functioning in older adults

    Get PDF
    Background. Declines in cognitive functioning are a normal part of aging that can affect daily functioning and quality of life. This study will examine the impact of an exercise training program, and a combined exercise and cognitive training program, on the cognitive and physical functioning of older adults. Methods/Design. Fit Bodies, Fine Minds is a randomized, controlled trial. Community-dwelling adults, aged between 65 and 75 years, are randomly allocated to one of three groups for 16 weeks. The exercise-only group do three 60-minute exercise sessions per week. The exercise and cognitive training group do two 60-minute exercise sessions and one 60-minute cognitive training session per week. A no-training control group is contacted every 4 weeks. Measures of cognitive functioning, physical fitness and psychological well-being are taken at baseline (0 weeks), post-test (16 weeks) and 6-month follop (40 weeks). Qualitative responses to the program are taken at post-test. Discussion. With an increasingly aged population, interventions to improve the functioning and quality of life of older adults are particularly important. Exercise training, either alone or in combination with cognitive training, may be an effective means of optimizing cognitive functioning in older adults. This study will add to the growing evidence base on the effectiveness of these interventions. Trial Registration. Australian Clinical Trials Register: ACTRN012607000151437

    Rapid Changes in the Light/Dark Cycle Disrupt Memory of Conditioned Fear in Mice

    Get PDF
    Background: Circadian rhythms govern many aspects of physiology and behavior including cognitive processes. Components of neural circuits involved in learning and memory, e.g., the amygdala and the hippocampus, exhibit circadian rhythms in gene expression and signaling pathways. The functional significance of these rhythms is still not understood. In the present study, we sought to determine the impact of transiently disrupting the circadian system by shifting the light/ dark (LD) cycle. Such β€˜β€˜jet lag’ ’ treatments alter daily rhythms of gene expression that underlie circadian oscillations as well as disrupt the synchrony between the multiple oscillators found within the body. Methodology/Principal Findings: We subjected adult male C57Bl/6 mice to a contextual fear conditioning protocol either before or after acute phase shifts of the LD cycle. As part of this study, we examined the impact of phase advances and phase delays, and the effects of different magnitudes of phase shifts. Under all conditions tested, we found that recall of fear conditioned behavior was specifically affected by the jet lag. We found that phase shifts potentiated the stress-evoked corticosterone response without altering baseline levels of this hormone. The jet lag treatment did not result in overall sleep deprivation, but altered the temporal distribution of sleep. Finally, we found that prior experience of jet lag helps to compensate for the reduced recall due to acute phase shifts. Conclusions/Significance: Acute changes to the LD cycle affect the recall of fear-conditioned behavior. This suggests that

    Models of Traumatic Cerebellar Injury

    Get PDF
    Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Studies of human TBI demonstrate that the cerebellum is sometimes affected even when the initial mechanical insult is directed to the cerebral cortex. Some of the components of TBI, including ataxia, postural instability, tremor, impairments in balance and fine motor skills, and even cognitive deficits, may be attributed in part to cerebellar damage. Animal models of TBI have begun to explore the vulnerability of the cerebellum. In this paper, we review the clinical presentation, pathogenesis, and putative mechanisms underlying cerebellar damage with an emphasis on experimental models that have been used to further elucidate this poorly understood but important aspect of TBI. Animal models of indirect (supratentorial) trauma to the cerebellum, including fluid percussion, controlled cortical impact, weight drop impact acceleration, and rotational acceleration injuries, are considered. In addition, we describe models that produce direct trauma to the cerebellum as well as those that reproduce specific components of TBI including axotomy, stab injury, in vitro stretch injury, and excitotoxicity. Overall, these models reveal robust characteristics of cerebellar damage including regionally specific Purkinje cell injury or loss, activation of glia in a distinct spatial pattern, and traumatic axonal injury. Further research is needed to better understand the mechanisms underlying the pathogenesis of cerebellar trauma, and the experimental models discussed here offer an important first step toward achieving that objective
    • …
    corecore