5 research outputs found

    The influence of racial factors on psychiatric diagnosis: A review and suggestions for research

    Full text link
    Research on race and diagnosis initially focused on black-white differences in depression and schizophrenia. Statistics showing a higher treated prevalence of schizophrenia and a lower prevalence of depression for blacks seemed to support the claim that blacks did not suffer from depression. Others argued, however, that clinicians were misdiagnosing depression in blacks. This article reviews empirical studies of racial differences in individual symptoms and summarizes the evidence on misdiagnosis. It argues that more attention must be paid to resolving two contradictory assumptions made by researchers working in the area of race and diagnostic inference: (1) blacks and whites exhibit symptomatology similarly but diagnosticians mistakenly assume that they are different; (2) blacks and whites display psychopathology in different ways but diagnosticians are unaware of or insensitive to such cultural differences. The article concludes with suggested research directions and a discussion of critical research issues.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44303/1/10597_2004_Article_BF00755677.pd

    A Novel Fic (Filamentation Induced by cAMP) Protein from Clostridium difficile Reveals an Inhibitory Motif-independent Adenylylation/AMPylation Mechanism

    No full text
    Filamentation induced by cAMP (Fic) domain proteins have been shown to catalyze the transfer of the AMP moiety from ATP onto a protein target. This type of post-translational modification was recently shown to play a crucial role in pathogenicity mediated by two bacterial virulence factors. Herein we characterize a novel Fic domain protein that we identified from the human pathogen Clostridium difficile. The crystal structure shows that the protein adopts a classical all-helical Fic fold, which belongs to class II of Fic domain proteins characterized by an intrinsic N-terminal autoinhibitory alpha-helix. A conserved glutamate residue in the inhibitory helix motif was previously shown in other Fic domain proteins to prevent proper binding of the ATP gamma-phosphate. However, here we demonstrate that both ATP binding and autoadenylylation activity of the C. difficile Fic domain protein are independent of the inhibitory motif. In support of this, the crystal structure of a mutant of this Fic protein in complex with ATP reveals that the gamma-phosphate adopts a conformation unique among Fic domains that seems to override the effect of the inhibitory helix. These results provide important structural insight into the adenylylation reaction mechanism catalyzed by Fic domains. Our findings reveal the presence of a class II Fic domain protein in the human pathogen C. difficile that is not regulated by autoinhibition and challenge the current dogma that all class I-III Fic domain proteins are inhibited by the inhibitory alpha-helix.Proteomic

    Structural and functional aspects of mannuronic acid–specific PL6 alginate lyase from the human gut microbe Bacteroides cellulosilyticus

    No full text
    Alginate is a linear polysaccharide from brown algae consisting of 1,4-linked β-D-mannuronic acid (M) and α-L-guluronic acid (G) arranged in M, G, and mixed MG blocks. Alginate was assumed to be indigestible in humans, but bacteria isolated from fecal samples can utilize alginate. Moreover, genomes of some human gut microbiome–associated bacteria encode putative alginate-degrading enzymes. Here, we genome-mined a polysaccharide lyase family 6 alginate lyase from the gut bacterium Bacteroides cellulosilyticus (BcelPL6). The structure of recombinant BcelPL6 was solved by X-ray crystallography to 1.3 Å resolution, revealing a single-domain, monomeric parallel β-helix containing a 10-step asparagine ladder characteristic of alginate-converting parallel β-helix enzymes. Substitutions of the conserved catalytic site residues Lys-249, Arg-270, and His-271 resulted in activity loss. However, imidazole restored the activity of BcelPL6-H271N to 2.5% that of the native enzyme. Molecular docking oriented tetra-mannuronic acid for syn attack correlated with M specificity. Using biochemical analyses, we found that BcelPL6 initially releases unsaturated oligosaccharides of a degree of polymerization of 2–7 from alginate and polyM, which were further degraded to di- and trisaccharides. Unlike other PL6 members, BcelPL6 had low activity on polyMG and none on polyG. Surprisingly, polyG increased BcelPL6 activity on alginate 7-fold. LC–electrospray ionization–MS quantification of products and lack of activity on NaBH4-reduced octa-mannuronic acid indicated that BcelPL6 is an endolyase that further degrades the oligosaccharide products with an intact reducing end. We anticipate that our results advance predictions of the specificity and mode of action of PL6 enzymes

    The Reward Deficiency Syndrome: A Biogenetic Model for the Diagnosis and Treatment of Impulsive, Addictive and Compulsive Behaviors

    No full text
    corecore