19,670 research outputs found

    Three small transiting planets around the M dwarf host star LP 358-499

    Full text link
    We report on the detection of three transiting small planets around the low-mass star LP 358-499 (K2-133), using photometric data from the Kepler-K2 mission. Using multiband photometry, we determine the host star to be an early M dwarf with an age likely older than a Gigayear. The three detected planets K2-133 b, c, and d have orbital periods of ca. 3, 4.9 and 11 days and transit depths of ca. 700, 1000 and 2000 ppm, respectively. We also report a planetary candidate in the system (EPIC 247887989.01) with a period of 26.6 days and a depth of ca. 1000 ppm, which may be at the inner edge of the stellar habitable zone, depending on the specific host star properties. Using the transit parameters and the stellar properties, we estimate that the innermost planet may be rocky. The system is suited for follow-up observations to measure planetary masses and JWST transmission spectra of planetary atmospheres.Comment: Accepted for publication in MNRAS Letters. Replaced previous arXiv version with final submitted versio

    Validation of a Temperate Fourth Planet in the K2-133 Multi-planet System

    Full text link
    We present follow-up observations of the K2-133 multi-planet system. Previously, we announced that K2-133 contained three super-Earths orbiting an M1.5V host star - with tentative evidence of a fourth outer-planet orbiting at the edge of the temperate zone. Here we report on the validation of the presence of the fourth planet, determining a radius of 1.730.13+0.141.73_{-0.13}^{+0.14} R_{\oplus}. The four planets span the radius gap of the exoplanet population, meaning further follow-up would be worthwhile to obtain masses and test theories of the origin of the gap. In particular, the trend of increasing planetary radius with decreasing incident flux in the K2-133 system supports the claim that the gap is caused by photo-evaporation of exoplanet atmospheres. Finally, we note that K2-133 e orbits on the edge of the stars temperate zone, and that our radius measurement allows for the possibility that this is a rocky world. Additional mass measurements are required to confirm or refute this scenario.Comment: Accepted for publication in MNRA

    Rigidity analysis of HIV-1 protease

    Full text link
    We present a rigidity analysis on a large number of X-ray crystal structures of the enzyme HIV-1 protease using the 'pebble game' algorithm of the software FIRST. We find that although the rigidity profile remains similar across a comprehensive set of high resolution structures, the profile changes significantly in the presence of an inhibitor. Our study shows that the action of the inhibitors is to restrict the flexibility of the beta-hairpin flaps which allow access to the active site. The results are discussed in the context of full molecular dynamics simulations as well as data from NMR experiments.Comment: 4 pages, 3 figures. Conference proceedings for CMMP conference 2010 which was held at the University of Warwic

    A study of possible sea state information in the sample and hold gate statistics for the GEOS-3 satellite altimeter

    Get PDF
    The statistical variations in the sample gate outputs of the GEOS-3 satellite altimeter were studied for possible sea state information. After examination of a large number of statistical characteristics of the altimeter waveforms, it was found that the best sea predictor for H-1/3 in the range of 0 to 3 meters was the 75th percentile of sample and hold gate number 11

    Transcutaneous measurement of volume blood flow

    Get PDF
    Blood flow velocity measurements, using Doppler velocimeter, are described. The ability to measure blood velocity using ultrasound is derived from the Doppler effect; the change in frequency which occurs when sound is reflected or transmitted from a moving target. When ultrasound of the appropriate frequency is transmitted through a moving blood stream, the blood cells act as point scatterers of ultrasonic energy. If this scattered ultrasonic energy is detected, it is found to be shifted in frequency according to the velocity of the blood cells, nu, the frequency of the incident sound, f sub o, the speed of sound in the medium, c, and the angle between the sound beam and the velocity vector, o. The relation describing this effect is known as the Doppler equation. Delta f = 2 f sub o x nu x cos alpha/c. The theoretical and experimental methods are evaluated

    Anatomy of a Langmuir supercell event

    Get PDF
    Langmuir supercells (LS), which are Langmuir circulations (LC) extending over full water column depth during storms and revealed by high water column backscatter from surface-origin microbubbles and bottom-origin sediment, were discovered in 2003 during several months of measurements in 15 m of water near the coast of New Jersey. Both the structures themselves and the specific forcing conditions under which they occur have been documented elsewhere. This paper provides an account of the broader oceanographic setting of supercell events, focusing on conditions at the start and end. The start of events is associated with the presence of surface waves of intermediate type that “feel bottom” with amplitudes sufficiently large to resuspend sediment and achievement of three conditions for full-depth LC: an unstratified water column, La \u3c ∼0.3 and |Ra| \u3c 105, where Ra and La are dimensionless parameters derived from scaling of the wave-averaged momentum equation. Event cessation is associated with failure of one of the latter two conditions or the reappearance of stratification. There is no fixed order in which conditions necessary for full-depth LC are met or fail. Comparison with data from a deeper site off Georgia suggests that coherent full-depth Langmuir circulations will not generally be observed in unstratified water columns much deeper than 25–30 m, a depth determined primarily by the wavelength of surface waves generated by typical storms. We also document two features of LC acting in the surface layer of the stratified water column that existed prior to onset of the prototype LS event. First, LC confined to the surface layer generated first mode internal waves with frequency that of the stratified interior. Secondly, active surface layer LC did not act efficiently as direct agents of mixed layer deepening, which occurred primarily in two separate episodes of Richardson number lowered by increased shear. Instead, as a result of quasi-organized structure and enhanced vertical penetration relative to stress-driven turbulence, the primary role of LC may be to increase efficiency of momentum transfer to the surface layer, enhancing surface layer acceleration and contributing to onset of the shear instability that does deepen the surface layer

    Cmah-dystrophin deficient mdx mice display an accelerated cardiac phenotype that is improved following peptide-PMO exon skipping treatment

    Get PDF
    Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin protein, leading to progressive muscle weakness and premature death due to respiratory and/or cardiac complications. Cardiac involvement is characterized by progressive dilated cardiomyopathy, decreased fractional shortening and metabolic dysfunction involving reduced metabolism of fatty acids—the major cardiac metabolic substrate. Several mouse models have been developed to study molecular and pathological consequences of dystrophin deficiency, but do not recapitulate all aspects of human disease pathology and exhibit a mild cardiac phenotype. Here we demonstrate that Cmah (cytidine monophosphate-sialic acid hydroxylase)-deficient mdx mice (Cmah−/−;mdx) have an accelerated cardiac phenotype compared to the established mdx model. Cmah−/−;mdx mice display earlier functional deterioration, specifically a reduction in right ventricle (RV) ejection fraction and stroke volume (SV) at 12 weeks of age and decreased left ventricle diastolic volume with subsequent reduced SV compared to mdx mice by 24 weeks. They further show earlier elevation of cardiac damage markers for fibrosis (Ctgf), oxidative damage (Nox4) and haemodynamic load (Nppa). Cardiac metabolic substrate requirement was assessed using hyperpolarized magnetic resonance spectroscopy indicating increased in vivo glycolytic flux in Cmah−/−;mdx mice. Early upregulation of mitochondrial genes (Ucp3 and Cpt1) and downregulation of key glycolytic genes (Pdk1, Pdk4, Ppara), also denote disturbed cardiac metabolism and shift towards glucose utilization in Cmah−/−;mdx mice. Moreover, we show long-term treatment with peptide-conjugated exon skipping antisense oligonucleotides (20-week regimen), resulted in 20% cardiac dystrophin protein restoration and significantly improved RV cardiac function. Therefore, Cmah−/−;mdx mice represent an appropriate model for evaluating cardiac benefit of novel DMD therapeutics
    corecore