1,314 research outputs found

    Cardiovascular disease risk prediction in older people: a qualitative study.

    Full text link
    BACKGROUND: Despite cardiovascular disease (CVD) risk prediction equations becoming more widely available for people aged ≥75 years, views of older people on CVD risk assessment are unknown. AIM: To explore older people's views on CVD risk prediction and its assessment. DESIGN AND SETTING: Qualitative study of community-dwelling older people in New Zealand. METHOD: A diverse group of older people was purposively recruited. Semi-structured interviews and focus groups were conducted, transcribed verbatim, and thematically analysed. RESULTS: Thirty-nine participants (mean age 74 years) of Māori, Pacific, South Asian, and European ethnicities participated in one of 26 interviews or one of three focus groups. Three key themes emerged: poor knowledge and understanding of CVD and its risk assessment; acceptability and perceived benefit of knowing and receiving advice on managing personal CVD risk; and distinguishing between CVD outcomes - stroke and heart attack are not the same. Most participants did not understand CVD terms, but were familiar with the terms 'heart attack' and 'stroke', and understood lifestyle risk factors for these events. Participants valued CVD outcomes differently, fearing stroke and disability - which might adversely affect independence and quality of life - but were less concerned about a heart attack, which was perceived as causing less disability or swifter death. These findings and preferences were similar across ethnic groups. All but two participants wanted to know their CVD risk, how to manage it, and distinguish between CVD outcomes. Those who did not wish to know perceived this as something only their God could decide. CONCLUSION: To inform clinical decision making for older people, consideration of an individual's wish to know their risk is important, and risk prediction tools should provide separate event types rather than just composite outcomes

    Sub-chronic ketamine administration increases dopamine synthesis capacity in the mouse midbrain: a preclinical in vivo PET study

    Get PDF
    PURPOSE: There is robust evidence that people with schizophrenia show elevated dopamine (DA) synthesis capacity in the striatum. This finding comes from positron emission tomography (PET) studies using radiolabelled l-3,4-dihydroxyphenylalanine (18F-DOPA). DA synthesis capacity also appears to be elevated in the midbrain of people with schizophrenia compared to healthy controls. We therefore aimed to optimise a method to quantify 18F-DOPA uptake in the midbrain of mice, and to utilise this method to quantify DA synthesis capacity in the midbrain of the sub-chronic ketamine model of schizophrenia-relevant hyperdopaminergia. PROCEDURES: Adult male C57Bl6 mice were treated daily with either ketamine (30 mg/kg, i.p.) or vehicle (saline) for 5 days. On day 7, animals were administered 18F-DOPA (i.p.) and scanned in an Inveon PET/CT scanner. Data from the saline-treated group were used to optimise an atlas-based template to position the midbrain region of interest and to determine the analysis parameters which resulted in the greatest intra-group consistency. These parameters were then used to compare midbrain DA synthesis capacity (KiMod) between ketamine- and saline-treated animals. RESULTS: Using an atlas-based template to position the 3.7 mm3 midbrain ROI with a T*-Tend window of 15-140 min to estimate KiMod resulted in the lowest intra-group variability and moderate test-retest agreement. Using these parameters, we found that KiMod was elevated in the midbrain of ketamine-treated animals in comparison to saline-treated animals (t(22) = 2.19, p = 0.048). A positive correlation between DA synthesis capacity in the striatum and the midbrain was also evident in the saline-treated animals (r2 = 0.59, p = 0.005) but was absent in ketamine-treated animals (r2 = 0.004, p = 0.83). CONCLUSIONS: Using this optimised method for quantifying 18F-DOPA uptake in the midbrain, we found that elevated striatal DA synthesis capacity in the sub-chronic ketamine model extends to the midbrain. Interestingly, the dysconnectivity between the midbrain and striatum seen in this model is also evident in the clinical population. This model may therefore be ideal for assessing novel compounds which are designed to modulate pre-synaptic DA synthesis capacity

    Does prior acute exercise affect postexercise substrate oxidation in response to a high carbohydrate meal?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Consumption of a mixed meal increases postprandial carbohydrate utilization and decreases fat oxidation. On the other hand, acute endurance exercise increases fat oxidation and decreases carbohydrate utilization during the post-exercise recovery period. It is possible that the resulting post-exercise increase in circulating nonesterified fatty acids could attenuate the ability of ingested carbohydrate to inhibit lipid oxidation. The purpose of this study was to determine whether prior exercise attenuates the usual meal-induced decline in lipid oxidation.</p> <p>Methods</p> <p>Six healthy, physically active young subjects (x age = 26.3 years, 4 males, 2 females) completed three treatments in random order after a ~10 h fast: (a) Exercise/Carbohydrate (Ex/CHO) – subjects completed a bout of exercise at 70% VO<sub>2peak </sub>(targeted net energy cost of 400 kcals), followed by consumption of a carbohydrate-rich meal; (b) Exercise/Placebo (Ex/Placebo) – subjects completed an identical bout of exercise followed by consumption of a placebo; and (c) No Exercise/Carbohydrate (NoEx/CHO) – subjects sat quietly rather than exercising and then consumed the carbohydrate-rich meal. Blood samples were obtained before and during the postprandial period to determine plasma glucose, insulin, and non-esterified fatty acids (NEFA). Respiratory gas exchange measures were used to estimate rates of fat and carbohydrate oxidation.</p> <p>Results</p> <p>Plasma NEFA were approximately two-fold higher immediately following the two exercise conditions compared to the no-exercise condition, while meal consumption significantly increased insulin and glucose in both Ex/CHO and NoEx/CHO. NEFA concentrations fell rapidly during the 2-h postprandial period, but remained higher compared to the NoEx/CHO treatment. Carbohydrate oxidation increased rapidly and fat oxidation decreased in response to the meal, with no differences in the rates of carbohydrate and fat oxidation during recovery between the Ex/CHO and NoEx/CHO conditions.</p> <p>Conclusion</p> <p>The plasma NEFA concentration is increased during the post exercise period, which is associated with elevated fat oxidation when no meal is consumed. However, when a mixed meal is consumed immediately following exercise, the initially elevated plasma NEFA concentration decreases rapidly, and postexercise fat oxidation during this 2-h postexercise, postprandial period is no higher than that of the 2-h postprandial period without prior exercise.</p

    The pharmacological regulation of cellular mitophagy

    Get PDF
    Small molecules are pharmacological tools of considerable value for dissecting complex biological processes and identifying potential therapeutic interventions. Recently, the cellular quality-control process of mitophagy has attracted considerable research interest; however, the limited availability of suitable chemical probes has restricted our understanding of the molecular mechanisms involved. Current approaches to initiate mitophagy include acute dissipation of the mitochondrial membrane potential (ΔΨm) by mitochondrial uncouplers (for example, FCCP/CCCP) and the use of antimycin A and oligomycin to impair respiration. Both approaches impair mitochondrial homeostasis and therefore limit the scope for dissection of subtle, bioenergy-related regulatory phenomena. Recently, novel mitophagy activators acting independently of the respiration collapse have been reported, offering new opportunities to understand the process and potential for therapeutic exploitation. We have summarized the current status of mitophagy modulators and analyzed the available chemical tools, commenting on their advantages, limitations and current applications

    Genetic Manipulation of Schistosoma haematobium, the Neglected Schistosome

    Get PDF
    More people are infected with Schistosoma haematobium than other major human schistosomes yet it has been less studied because of difficulty in maintaining the life cycle in the laboratory. S. haematobium might be considered the ‘neglected schistosome’ since minimal information on the genome and proteome of S. haematobium is available, in marked contrast to the other major schistosomes. In this report we describe tools and protocols to investigate the genome and genetics of this neglected schistosome. We cultured developmental stages of S. haematobium, and investigated the utility of introducing gene probes into the parasites to silence two model genes. One of these, firefly luciferase, was a reporter gene whereas the second was a schistosome gene encoding a surface protein, termed Sh-tsp-2. We observed that both genes could be silenced – a phenomenon known as experimental RNA interference (RNAi). These findings indicated that the genome of S. haematobium will be amenable to genetic manipulation investigations designed to determine the function and importance of genes of this schistosome and to investigate for novel anti-parasite treatments

    Quick, accurate, smart: 3D computer vision technology helps assessing confined animals' behaviour

    Get PDF
    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs' behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals' quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog's shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non-human animal behaviour science. Further improvements and validation are needed, and future applications and limitations are discussed.</p

    Global supply-chain effects of COVID-19 control measures

    Get PDF
    Countries have sought to stop the spread of coronavirus disease 2019 (COVID-19) by severely restricting travel and in-person commercial activities. Here, we analyse the supply-chain effects of a set of idealized lockdown scenarios, using the latest global trade modelling framework. We find that supply-chain losses that are related to initial COVID-19 lockdowns are largely dependent on the number of countries imposing restrictions and that losses are more sensitive to the duration of a lockdown than its strictness. However, a longer containment that can eradicate the disease imposes a smaller loss than shorter ones. Earlier, stricter and shorter lockdowns can minimize overall losses. A ‘go-slow’ approach to lifting restrictions may reduce overall damages if it avoids the need for further lockdowns. Regardless of the strategy, the complexity of global supply chains will magnify losses beyond the direct effects of COVID-19. Thus, pandemic control is a public good that requires collective efforts and support to lower-capacity countries

    Concurrent Exposure of Bottlenose Dolphins (Tursiops truncatus) to Multiple Algal Toxins in Sarasota Bay, Florida, USA

    Get PDF
    Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health
    corecore