421 research outputs found

    Democracy and Dysfunction: Rural Electric Cooperatives and the Surprising Persistence of the Separation of Ownership and Control

    Get PDF
    Since the 1930s, corporate law scholarship has focused narrowly on the public corporation and the problem of the separation of ownership and control-a problem many now believe has been mitigated or even solved. With rare exceptions, scholars have paid far less heed to other business forms that still play important roles in the American economy. In this Article, we examine a significant and almost completely overlooked business form, the Rural Electric Cooperative (REC). RECs were founded in a moment of optimism during the New Deal. As with other cooperatives, their organizational rules differed sharply from those of for-profit corporations. They were owned by their customers, with each customer-member having one vote irrespective of their energy consumption, and it was hoped these owners would provide active oversight of the REC\u27s managers and activities. Reality has proven otherwise. Corporate governance innovations of the last forty years have passed RECs by, leaving an organizational sector mired in governance dysfunctions stemming from the separation of ownership and control. Here we explain why RECs evolved as they did and why New Deal planners seized on the cooperative form to electrify the countryside; how significant governance problems have persisted, largely unaddressed, from the 1930s to today; and how a change in corporate governance rules, allowing for a market for corporate control in RECs, could fix some persistent problems in this still-important sector. Alternatively, we propose that RECs take up a new public role as rural broadband internet providers with a reinvigorated federal regulator to police governance failures

    Genome sequence of a gammaherpesvirus from a common bottlenose dolphin (Tursiops truncatus)

    Get PDF
    A herpesvirus genome was sequenced directly from a biopsy specimen of a rectal lesion from a female common bottlenose dolphin. This genome sequence comprises a unique region (161,235 bp) flanked by multiple copies of a terminal repeat (4,431 bp) and contains 72 putative genes. The virus was named common bottlenose dolphin gammaherpesvirus 1

    Parameterizing animal sounds and motion with animal-attached tags to study acoustic communication

    Get PDF
    Funding: Dolphin Quest, Inc.; School of Biology, University of St Andrews; Scottish Universities Life Sciences Alliance; Office of Naval Research; Marine Alliance for Science and Technology for Scotland; Horizon H2020.Stemming from the traditional use of field observers to score states and events, the study of animal behaviour often relies on analyses of discrete behavioural categories. Many studies of acoustic communication record sequences of animal sounds, classify vocalizations, and then examine how call categories are used relative to behavioural states and events. However, acoustic parameters can also convey information independent of call type, offering complementary study approaches to call classifications. Animal-attached tags can continuously sample high-resolution behavioural data on sounds and movements, which enables testing how acoustic parameters of signals relate to parameters of animal motion. Here, we present this approach through case studies on wild common bottlenose dolphins (Tursiops truncatus). Using data from sound-and-movement recording tags deployed in Sarasota (FL), we parameterized dolphin vocalizations and motion to investigate how senders and receivers modified movement parameters (including vectorial dynamic body acceleration, “VeDBA”, a proxy for activity intensity) as a function of signal parameters. We show that (1) VeDBA of one female during consortships had a negative relationship with centroid frequency of male calls, matching predictions about agonistic interactions based on motivation-structural rules; (2) VeDBA of four males had a positive relationship with modulation rate of their pulsed vocalizations, confirming predictions that click-repetition rate of these calls increases with agonism intensity. Tags offer opportunities to study animal behaviour through analyses of continuously sampled quantitative parameters, which can complement traditional methods and facilitate research replication. Our case studies illustrate the value of this approach to investigate communicative roles of acoustic parameter changes.Publisher PDFPeer reviewe

    Bottlenose dolphin mothers modify signature whistles in the presence of their own calves

    Get PDF
    PLT received support from ONR grants N00014-18-1-2062 and N00014-20-1-2709. Financial support for the whistle database project has come from the Protect Wild Dolphins fund at Harbor Branch Oceanographic Institute, Vulcan Machine Learning Center for Impact, Allen Institute for Artificial Intelligence, Adelaide M. & Charles B. Link Foundation, and Dolphin Quest, Inc.Human caregivers interacting with children typically modify their speech in ways that promote attention, bonding, and language acquisition. Although this “motherese,” or child-directed communication (CDC), occurs in a variety of human cultures, evidence among nonhuman species is very rare. We looked for its occurrence in a nonhuman mammalian species with long-term mother–offspring bonds that is capable of vocal production learning, the bottlenose dolphin (Tursiops truncatus). Dolphin signature whistles provide a unique opportunity to test for CDC in nonhuman animals, because we are able to quantify changes in the same vocalizations produced in the presence or absence of calves. We analyzed recordings made during brief catch-and-release events of wild bottlenose dolphins in waters near Sarasota Bay, Florida, United States, and found that females produced signature whistles with significantly higher maximum frequencies and wider frequency ranges when they were recorded with their own dependent calves vs. not with them. These differences align with the higher fundamental frequencies and wider pitch ranges seen in human CDC. Our results provide evidence in a nonhuman mammal for changes in the same vocalizations when produced in the presence vs. absence of offspring, and thus strongly support convergent evolution of motherese, or CDC, in bottlenose dolphins. CDC may function to enhance attention, bonding, and vocal learning in dolphin calves, as it does in human children. Our data add to the growing body of evidence that dolphins provide a powerful animal model for studying the evolution of vocal learning and language.Publisher PDFPeer reviewe

    Signal-specific amplitude adjustment to noise in common bottlenose dolphins (Tursiops truncatus)

    Get PDF
    Fieldwork in Sarasota was funded by the Grossman Foundation, the Office of Naval Research, and Woods Hole Oceanographic Institution. Health assessments were funded by Dolphin Quest, Inc. I.M.K. received support from the Danish Acoustical Society (Dansk Akustisk Selskab). P.L.T. received funding from the University of St Andrews, the Office of Naval Research (N00014-19-1-2560) and the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). F.H.J. was supported by the Office of Naval Research (N00014-1410410) and an AIAS-COFUND fellowship from Aarhus Institute of Advanced Studies under the FP7-PEOPLE programme of the EU (agreement no. 609033). All support is gratefully acknowledged.Anthropogenic underwater noise has increased over the past century, raising concern about the impact on cetaceans that rely on sound for communication, navigation and locating prey and predators. Many terrestrial animals increase the amplitude of their acoustic signals to partially compensate for the masking effect of noise (the Lombard response), but it has been suggested that cetaceans almost fully compensate with amplitude adjustments for increasing noise levels. Here, we used sound-recording DTAGs on pairs of free-ranging common bottlenose dolphins (Tursiops truncatus) to test (i) whether dolphins increase signal amplitude to compensate for increasing ambient noise and (ii) whether adjustments are identical for different signal types. We present evidence of a Lombard response in the range 0.1–0.3 dB per 1 dB increase in ambient noise, which is similar to that of terrestrial animals, but much lower than the response reported for other cetaceans. We found that signature whistles tended to be louder and with a lower degree of amplitude adjustment to noise compared with non-signature whistles, suggesting that signature whistles may be selected for higher output levels and may have a smaller scope for amplitude adjustment to noise. The consequence of the limited degree of vocal amplitude compensation is a loss of active space during periods of increased noise, with potential consequences for group cohesion, conspecific encounter rates and mate attraction.Publisher PDFPeer reviewe
    • …
    corecore