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Signal-specific amplitude adjustment to noise in common
bottlenose dolphins (Tursiops truncatus)
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ABSTRACT
Anthropogenic underwater noise has increased over the past century,
raising concern about the impact on cetaceans that rely on sound for
communication, navigation and locating prey and predators. Many
terrestrial animals increase the amplitude of their acoustic signals to
partially compensate for the masking effect of noise (the Lombard
response), but it has been suggested that cetaceans almost fully
compensate with amplitude adjustments for increasing noise levels.
Here, we used sound-recording DTAGs on pairs of free-ranging
common bottlenose dolphins (Tursiops truncatus) to test (i) whether
dolphins increase signal amplitude to compensate for increasing
ambient noise and (ii) whether adjustments are identical for different
signal types. We present evidence of a Lombard response in the
range 0.1–0.3 dB per 1 dB increase in ambient noise, which is similar
to that of terrestrial animals, but much lower than the response
reported for other cetaceans. We found that signature whistles tended
to be louder and with a lower degree of amplitude adjustment to noise
compared with non-signature whistles, suggesting that signature
whistles may be selected for higher output levels and may have a
smaller scope for amplitude adjustment to noise. The consequence
of the limited degree of vocal amplitude compensation is a loss of
active space during periods of increased noise, with potential
consequences for group cohesion, conspecific encounter rates and
mate attraction.

KEY WORDS: Cetacean, Signature whistle, Communication,
Anthropogenic noise, Masking, Lombard response

INTRODUCTION
Marine environments have seen a steady increase in anthropogenic
underwater noise over the past century (Andrew et al., 2002;
Hildebrand, 2009; McDonald et al., 2006; Merchant et al., 2016),
and noise is now recognized as an environmental pollutant of global
concern (Van der Graaf et al., 2012). Many marine animals have
evolved to rely on hearing as one of their primary senses, and sound

has come to play a fundamental role in vital behaviours as diverse as
foraging, predator detection, communication and navigation
(King and Janik, 2015; Simpson et al., 2005; Vasconcelos et al.,
2012). With this in mind, there is growing concern among the
scientific community, regulatory agencies and the public as to how
anthropogenic noise pollution might affect marine animals (Boyd
et al., 2011; Erbe et al., 2018).

At present, there is substantial evidence that anthropogenic noise
can have detrimental effects on a variety of marine animals
(Slabbekoorn et al., 2010; Weilgart, 2007). High-intensity sound
sources can have serious consequences including fatal injury or
strandings (Frantzis, 1998; Parsons et al., 2008; Simmonds and
Lopez-jurado, 1991) or lead to temporarily or permanently elevated
hearing thresholds (Kastak et al., 2005; Mooney et al., 2009; Smith
et al., 2004). At lower exposure levels, anthropogenic noise may
affect behavioural patterns (Nowacek et al., 2007; Samson et al.,
2016), which can be associated with fitness consequences and
eventually population-level effects (Nabe-Nielsen et al., 2018; New
et al., 2014). Anthropogenic noise may also interfere with the ability
of marine animals to detect biologically relevant sounds – an effect
termedmasking (American National Standards Institute, 2008; Erbe
et al., 2016b). Studies have shown that masking by anthropogenic
noise can cause failure to detect and discriminate a range of
important sounds used for localization of prey (Schaub et al., 2008),
parent–offspring interactions (Lucass et al., 2016) and predator
recognition (Templeton et al., 2016), among others. Thus,
increasing noise may compromise detection of acoustic signals
and effectively reduce the conspecific detection range or active
space (Marten and Marler, 1977).

Masking is a universal feature of all sensory systems. Underwater
soundscapes typically consist of noise generated by wind, waves
and precipitation as well as biological sounds, such as fish choruses
or snapping shrimp (Erbe et al., 2016a), all of which can vary
greatly with both time and location. Consequently, many species
have evolved mechanisms to mitigate effects of masking and ensure
efficient communication across a wide span of ambient noise levels
(Erbe et al., 2016b). Among these are vocal adaptations of the
sender, including changes in signal type (Dunlop et al., 2010),
changes in signalling activity such as timing or redundancy, or
modifications of certain signal features such as frequency or
amplitude (Hotchkin and Parks, 2013; Tyack and Janik, 2013). One
such modification is the increase of signal amplitude in response to a
perceived increase in ambient noise – a mechanism known as the
Lombard response (Brumm and Zollinger, 2011; Lombard, 1911).
In humans, the magnitude of the Lombard response has been shown
to vary according to experimental design, but increases in vocal
amplitude generally range from 0.05 to 0.4 dB per 1 dB increase in
noise level (Table 1; Garnier et al., 2010; Hotchkin and Parks,
2013). A similar Lombard response magnitude in the range of 0.2 to
0.8 dB per 1 dB increase in noise level has been demonstrated forReceived 11 October 2019; Accepted 1 November 2019
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other primates (Brumm et al., 2004; Egnor and Hauser, 2006) as
well as bats (Tressler and Smotherman, 2009) and several different
bird taxa (Brumm and Todt, 2002; Cynx et al., 1998; Dorado-Correa
et al., 2018). Thus, many highly vocal terrestrial animals display a
Lombard response that helps to partially offset the reduction in
active space, yet none of them fully compensate for increased
ambient noise and, therefore, face a loss of active space during
periods of increased noise.
A series of studies have examined the Lombard response in

marine mammals. In 2005, Scheifele and colleagues first
described a Lombard response of 0.9 dB per 1 dB increase in
ambient noise in beluga whales (Delphinapterus leucas)
(Scheifele et al., 2005). Subsequently, Lombard responses of
∼0.8–1 dB per 1 dB increase in noise have been reported for
groups of killer whales (Orcinus orca) (Holt et al., 2009), North
Atlantic right whales (Eubalaena glacialis) (Parks et al., 2011a,b)
and humpback whales (Megaptera novaeangliae) (Dunlop et al.,
2014; Fournet et al., 2018). Thus, cetaceans seem to almost match
increases in ambient noise with increases in signal amplitude, at
least within the range of ambient noise levels measured in the
respective studies.
This variation in the Lombard response warrants further

investigation. The acoustic communication range will decrease for
animals that only partially compensate for increases in ambient
noise, which can affect group cohesion, encounter rates and mate
attraction (Clark et al., 2009). However, if cetaceans are able to
compensate fully for increased ambient noise within a reasonable
span of ambient noise levels, their active space remains constant and
they only have to manage any potential energetic demands
associated with increased signalling effort (Holt et al., 2015, but
see also Pedersen et al., 2020).

Here, we tested the hypothesis that dolphins compensate for
increasing ambient noise in a 1 dB to 1 dB manner as reported for
larger cetaceans. We investigated this using acoustic tags deployed
on free-ranging common bottlenose dolphins, Tursiops truncatus
(Montagu 1821), which is one of the best-studied cetacean species
because of its cosmopolitan distribution and prevalence in marine
parks and aquariums (Wells and Scott, 2018). Bottlenose dolphins
are known to produce individually distinctive signature whistles
(Caldwell and Caldwell, 1965; Caldwell et al., 1990; Sayigh et al.,
2007) that are important for facilitating group cohesion (Janik and
Slater, 1998; King et al., 2016; Quick and Janik, 2012). As such,
signature whistles may be especially important in situations of
increased separation, especially in typically murky estuarine
habitats, where maintaining active space is more critical.
Therefore, we tested whether vocal amplitude compensation was
different for signature and non-signature whistles.

MATERIALS AND METHODS
Study animals and location
The study was conducted with the long-term resident community of
common bottlenose dolphins in Sarasota Bay, FL, USA (Wells,
2014). This is an urbanized coastal area where dolphins are exposed
to a vessel passing within 100 m every 6 min on average during
daylight hours (Nowacek et al., 2001). As such, this habitat involves
highly fluctuating noise levels with frequent increases in masking
noise (Fig. 1) within frequencies used for signaturewhistles (Fig. S1).

As part of a long-term study (Irvine et al., 1981; Wells, 1991),
resident dolphins have been handled and examined during periodic
capture–release sessions conducted since 1970, taking advantage of
the shallow waters of the dolphins’ range. Early efforts emphasized
marking animals for future identification for behavioural studies,

Table 1. The Lombard response magnitude measured across taxonomic groups

Taxonomic group Species Lombard response magnitude (dB/dB) Reference

Primates Human [speech] 0.05–0.2 Lane and Tranel, 1971
0.12–0.38 Garnier et al., 2010
0.14–0.41 Cynx et al., 1998

Long-tailed macaque (Macaca fascicularis) 0.2 Sinnott et al., 1975
Pig-tailed macaque (Macaca nemestrina) 0.2 Sinnott et al., 1975
Common marmoset (Callithrix jacchus) 0.3–0.75 Brumm et al., 2004
Cotton-top tamarin (Saguinus oedipus) 0.35–0.63 Egnor and Hauser, 2006
Grey mouse lemur (Microcebus murinus) 0.2–0.22 Schopf et al., 2016

Bats Free-tailed bat (Tadarida brasiliensis) 0.43 (echolocation) Tressler and Smotherman, 2009
Pale spear-nosed bats (Phyllostomus discolor) 0.1 (echolocation) Luo et al., 2015

Cetaceans Humpback whale (Megaptera novaeangliae) 0.9 Dunlop et al., 2014
0.81 Fournet et al., 2018

Right whale (Eubalaena glacialis) 1 Parks et al., 2011a
Killer whale (Orcinus orca) 1 Holt et al., 2009
Beluga whale (Delphinapterus leucas) 0.88 Scheifele et al., 2005
Bottlenose dolphin (Tursiops truncatus) 0.1–0.3 This study

Birds Zebra finch (Taeniopygia guttata) 0.3–0.49 Cynx et al., 1998
Great tits (Parus major) 0.28 Zollinger et al., 2017
Nightingale (Luscinia megarhynchos) 0.2–0.66 Brumm and Todt, 2002
Budgerigars (Melopsittacus undulatus) 0.16 Osmanski and Dooling, 2009
Canaries (Serinus canaria) 0.1 Hardman et al., 2017
Mallard (Anas platyrhynchos) 0.18–0.75 Dorado-Correa et al., 2018
Tinamou (Eudromia elegans) 0.75 Schuster et al., 2012
Domestic fowl (Gallus gallus domesticus) 0.41 Brumm et al., 2009

Sirenians West Indian manatee (Trichechus manatus) n.s. Miksis-Olds and Tyack, 2009

An overview of the documented Lombard response magnitude (measured as dB change in signal amplitude per dB change in noise) in mammals and birds.
For both bat species, the Lombard response was measured for echolocation signals. n.s., not significant.
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and obtaining life history and genetic information on each resident
dolphin to facilitate interpretation of behaviour; since 1988, health
parameters have been examined as well (Wells, 2009; Wells et al.,
2004). During capture–release sessions, a large seine net (500×4 m
in size) was deployed from a motorboat to encircle a small group
of dolphins in shallow water. Once enclosed in a net corral,
experienced handlers could safely handle and support the animals.
A suite of morphological, physiological and behavioural data were
collected, partly in water and partly on an adjacent sampling boat
with a shaded, padded deck. Behaviour and respiratory patterns
were closely monitored by veterinarians throughout the process, and
water was repeatedly washed over the dolphins when on deck. The
whole process typically required 1–2 h, after which the dolphins
were ready to be released on site.

Permits
Fieldwork was carried out under National Marine Fisheries Service
Scientific Research Permit no. 15543 to R.S.W. as well as through
IACUC approvals through Woods Hole Oceanographic Institution,
Mote Marine Laboratory and the University of St Andrews Animal
Welfare and Ethics Committee.

Experimental design
Before release, some dolphins were instrumented with a high-
resolution sound and movement recording DTAG3 (Johnson and
Tyack, 2003), which was positioned roughly halfway between the

blowhole and the dorsal fin, approximately 0.5 m from the melon
(Fig. 2A). The skin of the dolphin was gently scrubbed with a piece
of paper towel to remove algae and dead skin cells, and the tag was
attached with four small (approximately 48 mm diameter) sterilized
suction cups. The tag continuously recorded 16-bit sound on two
hydrophones at a sample rate of 240 kHz and with a flat frequency
response within ±2 dB between 0.5 and 80 kHz. A pressure sensor,
tri-axial accelerometer and magnetometer were sampled at
200–250 Hz after passing through an analog low-pass filter with
a −3 dB cut-off frequency of one-third of the sampling rate.
Preceding the experiment, tag sensitivities were measured by relative
calibration in an anechoic tank (1.5 m diameter, Aarhus University)
to a clip level of 179 dB re. 1 µPa (±1.2 dB between tags). The tags
were programmed to release after a specified time period (up to 24 h),
but many came off before this programmed release (see Table S1) as
a result of high-energy activities of the dolphins, including repeated
breaching, fast sprints or energetic interactions with conspecifics.
After detachment, the tags floated to the surface to be retrieved using
boat-based tracking of their VHF beaconswith aYagi antenna and an
R1000 VHF receiver (Communication Specialists, Inc.).

Obtaining whistle parameters from tag recordings
All tag recordings were audited in MATLAB R2013b (The
MathWorks, Inc., Natick, MA, USA) using DTAG-toolbox scripts
(https://www.soundtags.org/). In this process, each recording was
manually inspected in sequential 10 s segments. For each period,
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Fig. 1. Example of ambient noise exposure for a bottlenose dolphin in Sarasota Bay. (A,B) Ambient noise throughout a 5 h tagging period immediately
following release, calculated as either ambient noise level (NL) within a 4–20 kHz analysis band (A) or as spectral noise level (B). Long-term spectral noise
level was calculated for each 2 s block by subdividing the block into 0.1 s analysis windows with 90% overlap, identifying the analysis window with the lowest
bandpass-filtered noise level, then calculating the power spectral density using Welch’s method (FFT size 4096, sample rate 240 kHz). Surfacing periods
within 0.2 m of the surfacewere identified and removed using linear interpolation of both bandpass-filtered noise level and spectral noise level. Aurally identifiable
close vessel approaches were manually labelled within the dataset (red stars) and a spectrogram calculated for three example vessel passes (C–E) to show
the broadband noise generated by cavitation.

3

RESEARCH ARTICLE Journal of Experimental Biology (2019) 222, jeb216606. doi:10.1242/jeb.216606

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

http://jeb.biologists.org/lookup/doi/10.1242/jeb.216606.supplemental
https://www.soundtags.org/
https://www.soundtags.org/


Female

0

5

10

15

20

Calf

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (s)

0

5

10

15

20

Fr
eq

ue
nc

y 
(k

H
z)

Signature whistle loops

Signature whistle loopsSignature whistle loops

–0.15 –0.1 –0.05 0 0.05 0.1 0.15 0.2 0.25
Time (s)

0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y 
(k

H
z)

–40

–20

0

P
ow

er
 (d

B
)

0
20
40
60
80

C
um

ul
at

iv
e

en
er

gy
 (%

)

Signal analysis window
(95% energy duration)

Noise analysis
window (0.1 s)

A

B

C

Fig. 2. Experimental study design.
(A) Each dolphin in this study was
instrumented with a high-resolution
sound-recording DTAG (photograph
taken by the Sarasota Dolphin Research
Program under National Marine
Fisheries Service Scientific Research
Permit No. 15543). (B) Tag recordings
were manually audited using
simultaneous sound spectrograms to
parse out vocalizations from closely
associated individuals. (C) Each whistle
was analysed to extract the following
parameters: apparent output level
(AOL, dB re. 1 µPa), measured as SPL
rms within a 95% energy window
(indicated by dashed red lines) received
on the tag, and ambient noise level
(NL, dB re. 1 µPa), measured as SPL
rms for a 100 ms window (indicated by
dashed black lines) preceding thewhistle
or manually moved (within 1 s of whistle)
to avoid overlap with transients.
Parameters were measured within a
4–20 kHz band reflecting the frequency
of signature whistles used by individuals
in this study (Fig. S1).
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acoustic data were downsampled to 60 kHz, and amplitude
envelopes and spectrograms (Hamming window, FFT size 512,
50% overlap, 80 dB dynamic range) were displayed in concert with
a synchronized dive profile.
Individual vocalizations were labelled manually along with a

start time and duration cue according to the following definitions:
uninterrupted tonal sounds with a narrowband fundamental
frequency were labelled as either whistles (exceeding 100 ms in
duration) or chirps (durations of less than 100 ms: Caldwell and
Caldwell, 1968), with chirps ignored for the purpose of this paper.
Whistles produced by the tagged individual were distinguished from
those of non-focal individuals based on (i) intensity comparisons
between two tags deployed on tightly associated pairs (mother–calf
or male alliances) and (ii) a stereo angle of arrival within ±10 deg of
echolocation clicks produced by that animal.
Signature whistles of each tagged individual were identified and

differentiated from non-signature whistles by comparison with
the dominant whistle obtained from suction-cup hydrophone
recordings during health assessments, where signature whistles
account for the majority of emitted whistles (Sayigh et al., 2007).
No signature whistle copies (Janik, 2000b; Tyack, 1986) were
included in this study, as these are generally rare.
For the subsequent analysis, accurate measures of both whistle

amplitude and ambient noise were required. Therefore, we manually
removed all whistles that had overlapping extraneous sound
components, such as flow noise (during high-energy activities),
surfacing noise, clicks or other whistles from either the tagged
individual or nearby conspecifics. All remaining whistles were
analysed individually to extract a range of parameters (Fig. 2B).
First, each extracted sound period was filtered with a 4–20 kHz
6-pole Butterworth filter. This frequency range adequately captured
the energy in the fundamental frequency of signature whistles of the
recorded animals in our study while removing low-frequency flow
noise that did not overlap with dolphin signals (Fig. S1).
We first estimated the ambient noise level (NL, dB re. 1 µPa) in

the 4–20 kHz band as the root-mean-square sound pressure level
(SPLrms) within a 100 ms window preceding each whistle:
NL=10log10(IN), where the noise intensity IN is the mean of the
squared pressure values throughout the noise analysis window. If
loud transients (often echolocation clicks of the tagged animal or a
nearby conspecific) preceded the whistle, the background noise
window was manually shifted to a period without clicks within
1–2 s before the whistle, possibly generating a small but negligible
time gap between the NL and apparent output level (AOL)
measurements.
We then estimated the AOL (dB re. 1 µPa) of the whistle as

received on the tag (Madsen et al., 2005). To do this, we calculated a
time window containing 95% of the signal energy (Fig. 2; Madsen
et al., 2005). We then measured the SPLrms within the 95% energy
window after correcting for noise intensity: AOL=10log10(IS−IN),
where signal intensity IS is the mean of the squared pressure
values over the 95% energy window and IN is the noise intensity as
defined above. The signal-to-noise ratio was then calculated as
the difference between AOL and NL. These AOL measurements
enabled the subsequent analysis of relative changes in output level
as a function of ambient noise.

Statistics
To investigate the effect of noise level on signal amplitude, we used
a subset of whistles that were filtered to have a signal-to-noise ratio
greater than 6 dB and a minimum of six signature and six non-
signature whistles per individual. The former criterion was

implemented because measurements of signal intensity become
steadily more unreliable at increasingly small signal-to-noise
ratios. Given the close proximity of the tag to the sound source,
this criterion affected very few signals (5% of all recorded
whistles).

We performed a linear mixed-effects analysis of the relationship
between AOL and NL using the lme4 toolbox (Bates et al., 2015) in
R (http://www.R-project.org/). We modelled NL, whistle type and
an interaction term between the two as fixed effects to examine their
importance in explaining AOL. We accounted for differences
between individuals by including a random effect on both intercept
and slope for each tagged dolphin.

As a model selection method, we generated four nested models: a
null model with only random effects and three extending models
where each new model was identical to the previous except for the
addition of a fixed effect. A stepwise likelihood-ratio test was
performed to evaluate the importance of each of the fixed effects
and to determine which model was best fitted to the data. We
visualized the marginal effect (ignoring random factors) of NL on
AOL for each whistle type using parametric bootstrapping
with 1000 replicates within the bootpredictlme4 toolbox (http://
www.remkoduursma.com/post/2017-06-15-bootpredictlme4/) in
R. Subsequently, we constructed a separate linear mixed-effect
model for each whistle type and then tested whether NL had a
significant effect on AOL using the same likelihood-ratio test, by
comparison with a model without NL.

RESULTS
In total, 26 individual tag recordings of 23 different individuals were
analysed for this study, including data from nine mother–calf pairs
and four male alliance pairs in the years 2012–2016 (see Table S1
for the full data overview). Individual tag recordings ranged in
duration from 0.58 h to 24.24 h (mean±s.d., 10.95±7.72 h),
amounting to a total of 284.82 h. From these recordings, we
manually audited and analysed 222.42 h (see Table S1) and
identified a total of 4151 whistles with no overlapping extraneous
sounds. After filtering for a signal-to-noise ratio greater than 6 dB
(removing 209 whistles, equal to 5% of all whistles) and a minimum
of 6 signature and 6 non-signaturewhistles per individual (removing
7 tag recordings with a total of 87 whistles, equal to 2% of the total),
our remaining dataset for statistical treatment consisted of 19
individuals (6 mothers, 8 calves, 5 males) and a total of 3855
whistles (2750 signature and 1105 non-signature whistles).
Measured NL ranged from 80 to 147 dB re. 1 µPa, while the
range of AOL was from 105 to 164 dB re. 1 µPa, which is
compatible with previous studies of output levels for this species
(Janik, 2000a; Jensen et al., 2012; Tyack, 1986).

The linear mixed-effects model showed that the addition of NL,
whistle type and an interaction term between the two factors
significantly improved model fit (see ΔAIC and ΔBIC; Table 2) and
that all three of these fixed effects had a significant effect on AOL
(Table 2).

We found a much lower degree of amplitude compensation
compared with previous studies on cetaceans, despite a large
variation within individual datasets. Representative relationships
between AOL and noise level are shown for both signature and non-
signaturewhistles of a representative mother, calf and male in Fig. 3.
AOL within each whistle type varied greatly, with significant
variation in the estimated Lombard response magnitude across
datasets (Fig. 4A,B). Despite these confounding factors, all datasets
showed a Lombard response magnitude far less than the ∼0.9–1 dB
per 1 dB noise found in previous cetacean studies (Table S1).
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We also found significant differences in the output level of
signature and non-signature whistles (for the entire dataset: signature
whistlemean±s.d. AOL: 133±7.5 dB re. 1 µPa, non-signaturewhistle
AOL: 127±9.3 dB re. 1 µPa). Thus, the AOL of signature whistles
was generally greater than that of non-signature whistles, with a
difference of 8.6 dB after accounting for individual differences and
the simultaneous effect of noise.
Finally, we found that the effect of NL on AOL was significantly

lower for signature whistles (0.14±0.03 dB per 1 dB noise) than for
non-signature whistles (0.32±0.03 dB per 1 dB noise). These results
were robust to different acoustic measures of AOL, irrespective of
whether models were run using rms output level, 200 ms peak rms
level or energy flux density (Table S2). A separate linear mixed-
effects model with only signature whistles demonstrated that the
AOL of these whistles was significantly correlated with NL despite
a low slope (x21=11.214, P=0.0008).

DISCUSSION
Animals that communicate acoustically need to solve the challenge
of successfully transmitting signals in varying conditions of
ambient noise. In this paper, we show that bottlenose dolphins
demonstrate a Lombard response by adjusting signal amplitude in

response to variation in ambient noise levels. We found that the
magnitude of this response is consistent with studies of terrestrial
species, yet much lower than reported by previous studies on larger
cetaceans. Furthermore, the response magnitude was on average
consistently lower for signature whistles (0.1 dB increase in AOL
per 1 dB increase in NL) than for non-signature whistles (0.3 dB
increase in AOL per 1 dB increase in NL), demonstrating the utility
of separating signals with different functions when studying vocal
compensation in wild animals.

The lower amplitude adjustments seen for signature whistles may
be a consequence of these whistles inherently operating at higher
output levels than non-signature whistles, rendering a smaller
potential scope for the Lombard response. Similar arguments have
been presented to explain why some species of frogs (Schwartz and
Bee, 2013) and tokay geckos (Brumm and Zollinger, 2017) do not
exhibit a Lombard response. While signature whistles were emitted
on average at 9 dB higher output levels compared with non-
signature whistles, this difference depended on noise level, and the
two signal types gradually converged on similar output levels at
high noise levels. Maximum source levels of wild bottlenose
dolphins have been estimated to be approximately 162–169 dB re.
1 µPa SPLrms (Janik, 2000a; Jensen et al., 2012), which is

Table 2. Model selection using likelihood-ratio test

Model d.f. ΔAIC ΔBIC χ2 P-value

Full model: AOL∼NL+WT+NL×WT+(1+NL|ID) 8 0 0 37.62 <0.0001
Model 2: AOL∼NL+WT+(1+NL|ID) 7 35 29 1050.22 <0.0001
Model 1: AOL∼NL+(1+NL|ID) 6 1084 1071 22.32 <0.0001
Null model: AOL∼(1+NL|ID) 5 1104 1085

Four linear mixed-effects models (fixed effects in bold, random effects in italics) were tested hierarchically, with χ2 andP-values for eachmodel representing a test
against the model one level down. The results show that the addition of each fixed effect significantly improved the model. Thus, all three fixed effects had a
significant effect on apparent output level (AOL: dB re. 1 µPa) (P<0.0001). The full model showed that signature whistles were 8.6 dB higher output than non-
signature whistles, with a shallower slope (0.14±0.03 dB per 1 dB noise level) compared with non-signature whistles (0.14±0.03 dB per 1 dB noise level). NL,
noise level (dB re. 1 µPa); WT, whistle type; ID, individual.
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comparable to the maximum output levels measured in this study,
especially considering that tag-recorded AOLs need to be corrected
for tag placement and directivity to be directly comparable with an
on-axis source level at 1 m distance. Higher output levels of
signature whistles are probably tied to differences in function
between the two signal types. Signature whistles are used to
broadcast individual identity (Sayigh et al., 1999) and facilitate
group cohesion (Janik and Slater, 1998), including when separate
groups meet at sea (Quick and Janik, 2012) or when mother–calf
pairs need to reunite (King et al., 2016; Smolker et al., 1993). These
functions are likely to benefit from a higher output level and the
larger detection range that comes with it. In contrast, while much
less is known about the functions of non-signature whistles, the

9 dB lower output levels for non-signature whistles would result in a
threefold smaller detection range (Jensen et al., 2012; Quintana-
Rizzo et al., 2006). This smaller active space supports the notion that
many non-signature whistles may be used in more discreet short-
range communication contexts, which could serve many potential
functions (Gustison and Townsend, 2015). At the same time, the
lower output levels of non-signature whistles compared with the
physiological peak output levels allow a larger scope for changing
amplitude in response to noise.

The Lombard response magnitudes of signature and non-
signature whistles in this study are similar to those demonstrated
for terrestrial mammals (Egnor and Hauser, 2006; Garnier et al.,
2010; Tressler and Smotherman, 2009), but lower than shown for
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other cetaceans across a similar span of noise levels (90–150 dB re.
1 µPa SPLrms) (Holt et al., 2009; Parks et al., 2011a; Scheifele et al.,
2005). Part of the reason for the different results might be ascribed to
socio-behavioural differences among the cetacean species being
studied and the contexts in which they were studied. We know from
humans that the Lombard response may depend on social context as
well as speaker task (Garnier et al., 2010; Lu and Cooke, 2008),
though this is less well understood for animals. One study of
Bengalese finches found a Lombard effect in undirected song but
not in directed singing (Kobayasi and Okanoya, 2003), but the
evidence was inconsistent across individuals, and several other
studies of the closely related zebra finch have found a Lombard
response during undirected singing (Cynx et al., 1998; Zollinger
et al., 2011). In this study, all tagged dolphins were closely
associated pairs, either mothers with a dependent calf or allied males
(Connor and Krützen, 2015; Wells, 2003). It is possible that the
majority of the recorded whistles were exchanges between the
tagged individuals and, thus, used in relatively short-range
communication where range was not limited by noise. Studies on
this dolphin population have shown that pairs often stay within
communication range of each other while moving through their
acoustically complex habitat (Quintana-Rizzo et al., 2006), which
might lessen the motivation to maintain their active space and lead
to a smaller Lombard response if this is cognitively modulated. At
the same time, animals might change overall cohesion in response
to increasing noise (Buckstaff, 2004), thus offsetting the need to
increase vocal output. It is possible that communication within
larger social groups or with distant conspecifics is more sensitive to
changes in detection range, necessitating a tighter coupling of signal
output level and noise level. However, this argument breaks down
for animals communicating to distant animals at an unknown range,
where a better option may just be to vocalize as loudly as possible.
There are several methodological differences between studies that

may also help explain our different results. Studies of the Lombard
response require reliable measurements of both signal output
levels and any simultaneous changes in background noise (or
experimentally manipulated noise), but this is quite difficult to
obtain for cetaceans in the wild. Scheifele et al. (2005), Holt et al.
(2009) and Dunlop et al. (2014) used hydrophone arrays to obtain
estimates of output levels of whale signals and concurrent
fluctuations in noise levels. This method has two problems. First,
the spatial offset between the animals and the hydrophone means
that the noise level experienced by the animals may be considerably
different from the noise level recorded. While this problem may be
less important in the case of noise generated primarily by wind and
waves rather than shipping (Dunlop et al., 2010), changes in depth
of the whale or bathymetry at and around the location of the whale
still affect the resulting noise level. Second, because the signal-to-
noise ratio of each signal has to be sufficiently high to enable a
reliable measurement of the signal, this method also biases analysed
signals toward higher amplitude signals. As signal-to-noise ratio
also depends on transmission range, this filtering introduces a
further bias towards higher amplitude signals (or signals recorded at
shorter range) at higher ambient noise levels, thus potentially
driving a larger apparent vocal adaptation to noise.
On-animal tag recordings (Parks et al., 2011a; this study) offer

some advantages with respect to both of these issues. If calls from
the tagged individual can be determined confidently, the spatial
offset between noise recorded and noise experienced by the animals
is minimal, as estimates of concurrent noise levels can be recorded at
the location of the animal. At the same time, signals are recorded at a
constant distance close to the sound-production apparatus of the

animal and at a relatively high received level compared with more
distant recordings. However, there are still some difficulties for
recording signals on the tag. These tags are almost always
positioned behind the sound generator and, as a consequence,
signal features received on tags are likely to be different from those
that would be recorded at 1 m in front of the animal, i.e. the source
level (Johnson et al., 2009). However, because of the relatively
omnidirectional nature of the fundamental frequency of bottlenose
dolphin whistles (Branstetter et al., 2012), any relative changes in
AOLwill probably mirror changes in source level. Another problem
is flow noise from animal movement on tags. We were able to
eliminate flow noise by excluding noise below 4 kHz. This is
justified because the main noise sources were small boat engines
that produce considerable high-frequency noise (Fig. 1), because
whistles do not contain energy below 4 kHz (Fig. S1), and because
dolphin hearing sensitivity is poor at low frequencies (Johnson,
1968). This problem would be harder to solve in an area where most
noise comes from large vessels producing primarily low-frequency
noise and where animals communicate and hear in those lower
frequency bands, as is the case for large whales.

Furthermore, when using tags to assess noise-dependent vocal
adjustments, the experimental design has to ensure that signals
produced by the tagged individual can be readily discerned from
signals from other individuals – even at very close range. In this
study, we used stereo angle-of-arrival estimates and amplitude
comparisons between pairs of tagged animals to accomplish this,
with known signature whistles of tagged individuals providing
additional certainty. A corresponding level of certainty is more
difficult to accomplish in studies of the larger baleen whales.
Acoustic signals generated by baleen whales are low frequency and
can propagate over relatively large distances, which makes it
challenging to ensure that signals are from the tagged animal. While
Parks et al. (2011a,b) minimized this problem by visually ensuring
that the tagged animal was alone at the surface, other studies have
used high-resolution accelerometers on tags to detect low-frequency
vibrations on the surface of fin whales as an indication of vocal
activity (Goldbogen et al., 2014), which might be an interesting
method for future studies of vocal amplitude compensation in large
cetaceans. Similarly, clicks from tagged animals are often much
easier to identify because of their off-axis distortion, and thus
species that communicate with click-based signals, such as some
delphinids (Pérez et al., 2016) or narrow-band high-frequency
species (Martin et al., 2018; Sorensen et al., 2018), may be good
species in which to examine Lombard response magnitude.

The lower Lombard response magnitude found in this study is
important to consider in the assessment of how anthropogenic noise
may affect acoustic communication, as it means that animals will
experience a loss of active space during periods of increased
ambient noise. Decreases in potential communication range can be
estimated in situations when noise levels, sound propagation
conditions and source characteristics of communication signals
are known or measured (Jensen et al., 2009). Several studies have
modelled changes in detection range as a consequence of large-scale
and long-term anthropogenic noise in marine environments, aiming
both to understand contributions of different noise sources and to
decrease impacts through improved management (Clark et al., 2009;
Hatch et al., 2012). However, none of these models account for
potential compensatory mechanisms and thus they may be
overestimating loss of communication space. In the long run, these
efforts may help us evaluate long-term population-level effects of
anthropogenic noise (Nabe-Nielsen et al., 2014; New et al., 2014) and
thus enable better data-driven conservation and marine planning
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(Hatch et al., 2016). However, there are still many poorly understood
aspects of acoustic masking, such as the extent of spatial release from
masking (Erbe et al., 2016b), or potential compensation mechanisms
that should be incorporated into models of masking.

Conclusion
In this study, we have shown that bottlenose dolphins partially
compensate for increased noise by adjusting signal amplitude, with
higher output levels and lower compensation for signature whistles
that are associated with group cohesion than for non-signature
whistles of unknown function. These findings underline the need
for further investigations of the interaction between signal types,
masking and how the social function of calls may be used to predict
range of communication. Further studies are needed to investigate
how dolphins modulate the intensity of their whistles in order to
tailor their effective range to the function of the whistle, varying
noise levels and varying propagation loss in different habitats such
as the sand flats, open bays and sea grass meadows (Quintana-Rizzo
et al., 2006). These analyses are required to understand and
evaluate socio-behavioural consequences of increased noise,
including maintenance of contact between mother and calf,
changes in overall structure and connectivity of a fission–fusion
society, decreased encounter rates with conspecifics, lost mating
opportunities, and possible shifts in time and energy budgets, as
potential consequences of behavioural compensation mechanisms.

Acknowledgements
The authors gratefully acknowledge the support of the Chicago Zoological Society’s
Sarasota Dolphin Research Program, as well as the many researchers and
volunteers that enable the health assessments of the Sarasota dolphin community,
especially N. Macfarlane, J. Van Der Hoop, R. Tyson and A. Barleycorn for their
support with the tagging project. Tag support and logistics were provided by
A. Bocconcelli, T. Hurst, D. Bogorff and R. Swift. M. Johnson provided tag analysis
software and expertise. We also express our gratitude to P. Madsen for support,
encouragement and helpful comments on this manuscript and to O. N. Larsen and
two anonymous reviewers for constructive feedback.

Competing interests
The authors declare no competing or financial interests.

Author contributions
Conceptualization: I.M.K., F.H.J.; Methodology: F.H.J.; Software: F.H.J.; Formal
analysis: I.M.K.; Investigation: I.M.K., K.M., R.S.W., L.S.S., V.M.J., P.L.T.;
Resources: K.M., R.S.W., L.S.S., V.M.J., P.L.T.; Data curation: I.M.K.; Writing -
original draft: I.M.K.; Writing - review & editing: I.M.K., K.M., R.S.W., L.S.S., V.M.J.,
P.L.T., F.H.J.; Visualization: I.M.K., F.H.J.; Supervision: F.H.J.; Project
administration: I.M.K., F.H.J.; Funding acquisition: R.S.W., P.L.T., F.H.J.

Funding
Fieldwork in Sarasota was funded by the Grossman Foundation, the Office of Naval
Research, and Woods Hole Oceanographic Institution. Health assessments were
funded by Dolphin Quest, Inc. I.M.K. received support from the Danish Acoustical
Society (Dansk Akustisk Selskab). P.L.T. received funding from the University of
St Andrews, the Office of Naval Research (N00014-19-1-2560) and the MASTS
pooling initiative (The Marine Alliance for Science and Technology for Scotland).
F.H.J. was supported by the Office of Naval Research (N00014-1410410) and an
AIAS-COFUND fellowship from Aarhus Institute of Advanced Studies under the
FP7-PEOPLE programme of the EU (agreement no. 609033). All support is
gratefully acknowledged.

Supplementary information
Supplementary information available online at
http://jeb.biologists.org/lookup/doi/10.1242/jeb.216606.supplemental

References
American National Standards Institute (2008). Bioacoustical Terminology (ansi
S2.20-1995, R 2008). New York: Acoustical Society of America.

Andrew, R. K., Howe, B. M., Mercer, J. A. and Dzieciuch, M. A. (2002). Ocean
ambient sound: Comparing the 1960s with the 1990s for a receiver off the
California coast. Acoust. Res. Lett. Online 3, 65-70. doi:10.1121/1.1461915

Bates, D., Maechler, M., Bolker, B. and Walker, S. (2015). Fitting linear mixed-
effects models using lme4. J. Stat. Soft. 67, 1-48. doi:10.18637/jss.v067.i01

Boyd, I. L., Frisk, G., Urban, E., Tyack, P., Ausubel, J., Seeyave, S., Cato, D.,
Southall, B., Weise, M., Andrew, R. et al. (2011). An international quiet ocean
experiment. Oceanography 24, 174-181. doi:10.5670/oceanog.2011.37

Branstetter, B. K., Moore, P. W., Finneran, J. J., Tormey, M. N. and Aihara, H.
(2012). Directional properties of bottlenose dolphin (Tursiops truncatus) clicks,
burst-pulse, and whistle sounds. J. Acoust. Soc. Am. 131, 1613-1621. doi:10.
1121/1.3676694

Brumm, H. and Todt, D. (2002). Noise-dependent song amplitude regulation in a
territorial songbird. Anim. Behav. 63, 891-897. doi:10.1006/anbe.2001.1968

Brumm, H. and Zollinger, S. A. (2011). The evolution of the Lombard effect: 100
years of psychoacoustic research. Behaviour 148, 1173-1198. doi:10.1163/
000579511X605759

Brumm, H. and Zollinger, S. A. (2017). Vocal plasticity in a reptile. Proc. R. Soc. B
284, 20170451. doi:10.1098/rspb.2017.0451
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