197 research outputs found

    Structural behaviour of copper chloride catalysts during the chlorination of CO to phosgene

    Get PDF
    The interaction of CO with an attapulgite-supported Cu(II)Cl2 catalyst has been examined in a micro-reactor arrangement. CO exposure to the dried, as-received catalyst at elevated temperatures leads to the formation of CO2 as the only identifiable product. However, phosgene production can be induced by a catalyst pre-treatment where the supported Cu(II)Cl2 sample is exposed to a diluted stream of chlorine. Subsequent CO exposure at ~ 370°C then leads to phosgene production. In order to investigate the origins of this atypical set of reaction characteristics, a series of x-ray absorption experiments were performed that were supplemented by DFT calculations. XANES measurements establish that at the elevated temperatures connected with phosgene formation, the catalyst is comprised of Cu+ and a small amount of Cu2+. Moreover, the data show that unique to the chlorine pre-treated sample, CO exposure at elevated temperature results in a short-lived oxidation of the copper. On the basis of calculated CO adsorption energies, DFT calculations indicate that a mixed Cu+/Cu2+ catalyst is required to support CO chemisorption

    Selectivity determinants for dual function catalysts: applied to methanol selective oxidation on iron molybdate

    Get PDF
    Evolution of the IRAS spectrum with temperature after adsorbing methanol at room temperature. The bands at 2930 and 2820 cm− 1 are due to the methoxy species C–H stretches, while that at 2870 is due to the formate. Here, we report a simple, quantitative model to describe the behaviour of bi-cationic oxide catalysts, in terms of selectivity variation as a function of increased loading of one cation into a sample of the other. We consider its application to a particular catalytic system, namely the selective oxidation of methanol, which proceeds with three main C1 products, namely CO2, CO, and H2CO. The product selectivity varies in this order as Mo is added in increasing amounts to an iron oxide catalyst, and the product selectivity is determined by the distribution of dual sites and single sites of each species

    Ancient origins of low lean mass among South Asians and implications for modern type 2 diabetes susceptibility

    Get PDF
    Abstract: Living South Asians have low lean tissue mass relative to height, which contributes to their elevated type 2 diabetes susceptibility, particularly when accompanied by obesity. While ongoing lifestyle transitions account for rising obesity, the origins of low lean mass remain unclear. We analysed proxies for lean mass and stature among South Asian skeletons spanning the last 11,000 years (n = 197) to investigate the origins of South Asian low lean mass. Compared with a worldwide sample (n = 2,003), South Asian skeletons indicate low lean mass. Stature-adjusted lean mass increased significantly over time in South Asia, but to a very minor extent (0.04 z-score units per 1,000 years, adjusted R2 = 0.01). In contrast stature decreased sharply when agriculture was adopted. Our results indicate that low lean mass has characterised South Asians since at least the early Holocene and may represent long-term climatic adaptation or neutral variation. This phenotype is therefore unlikely to change extensively in the short term, so other strategies to address increasing non-communicable disease rates must be pursued

    Evolution of Lactase Persistence: Turbo-Charging Adaptation in Growth Under the Selective Pressure of Maternal Mortality?

    Get PDF
    The emergence of the capacity to digest milk in some populations represents a landmark in human evolution, linking genetic change with a component of niche construction, namely dairying. Alleles promoting continued activity of the enzyme lactase through the life-course (lactase persistence) evolved in several global regions within the last 7,000 years. In some European regions, these alleles underwent rapid selection and must have profoundly affected fertility or mortality. Elsewhere, alleles spread more locally. However, the functional benefits underlying the rapid spread of lactase persistence remain unclear. Here, we set out the hypothesis that lactase persistence promoted skeletal growth, thereby offering a generic rapid solution to childbirth complications arising from exposure to ecological change, or to new environments through migration. Since reduced maternal growth and greater neonatal size both increase the risk of obstructed labour, any ecological exposure impacting these traits may increase maternal mortality risk. Over many generations, maternal skeletal dimensions could adapt to new ecological conditions through genetic change. However, this adaptive strategy would fail if ecological change was rapid, including through migration into new niches. We propose that the combination of consuming milk and lactase persistence could have reduced maternal mortality by promoting growth of the pelvis after weaning, while high calcium intake would reduce risk of pelvic deformities. Our conceptual framework provides locally relevant hypotheses to explain selection for lactase persistence in different global regions. For any given diet and individual genotype, the combination of lactase persistence and milk consumption would divert more energy to skeletal growth, either increasing pelvic dimensions or buffering them from worsening ecological conditions. The emergence of lactase persistence among dairying populations could have helped early European farmers adapt rapidly to northern latitudes, East African pastoralists adapt to sudden climate shifts to drier environments, and Near Eastern populations counteract secular declines in height associated with early agriculture. In each case, we assume that lactase persistence accelerated the timescale over which maternal skeletal dimensions could change, thus promoting both maternal and offspring survival. Where lactase persistence did not emerge, birth weight was constrained at lower levels, and this contributes to contemporary variability in diabetes risk

    Carbidisation of Pd nanoparticles by ethene decomposition, with methane production

    Get PDF
    In the presence of oxygenated organic molecules pure Pd, which is widely used in chemicals processing and the pharmaceutical industry, tends to defunctionalise and dehydrogenate such molecules to H2, CO and surface/bulk carbon, in the form of a palladium carbide. We have investigated the formation of this carbide by ethene adsorption using a variety of techniques, including pulsed flow reaction measurements, XAS and DFT calculations of the lattice expansion during carbidisation. These experiments show that two main reactions take place above 500K, that is, both total dehydrogenation, but also disproportionation to methane and the carbide, after which the activity of the Pd is completely lost. We estimate the value of x in PdCx to be 0.28 (±0.03), and show by computer modelling that this fits the lattice expansion observed by XAFS, and that there is charge transfer to C from Pd of around 0.2-0.4 e

    Identification of single-site gold catalysis in acetylene hydrochlorination

    Get PDF
    There remains considerable debate over the active form of gold under operating conditions of a recently validated gold catalyst for acetylene hydrochlorination. We have performed an in situ x-ray absorption fine structure study of gold/carbon (Au/C) catalysts under acetylene hydrochlorination reaction conditions and show that highly active catalysts comprise single-site cationic Au entities whose activity correlates with the ratio of Au(I):Au(III) present. We demonstrate that these Au/C catalysts are supported analogs of single-site homogeneous Au catalysts and propose a mechanism, supported by computational modeling, based on a redox couple of Au(I)-Au(III) species. View Full Tex

    The adsorption of Cu on the CeO2(110) surface

    Get PDF
    We report a detailed density functional theory (DFT) study in conjunction with extended X-ray absorption fine structure (EXAFS) experiments on the geometrical and local electronic properties of Cu adatoms and Cu(II) ions in presence of water molecules and of CuO nanoclusters on the CeO2(110) surface. Our study of (CuO)n(=1,2&4) clusters on CeO2(110) shows that based on the Cu–O environment, the geometrical properties of these clusters may vary and their presence may lead to relatively high localization of charge on the exposed surfaces. We find that in the presence of an optimum concentration of water molecules, Cu has a square pyramidal geometry, which agrees well with our experimental findings; we also find that Cu(II) facilitates water adsorption on the CeO2(110) surface. We further show that a critical concentration of water molecules is required for the hydrolysis of water on Cu(OH)2/CeO2(110) and on pristine CeO2(110) surfaces

    Correction: In situ spectroscopic investigations of MoOx/Fe2O3 catalysts for the selective oxidation of methanol

    Get PDF
    Correction for ‘In situ spectroscopic investigations of MoOx/Fe2O3 catalysts for the selective oxidation of methanol’ by Catherine Brookes et al., Catal. Sci. Technol., 2016, 6, 722–730.</p

    Restructuring of AuPd nanoparticles studied by a combined XAFS/DRIFTS approach

    Get PDF
    The use of AuPd nanoparticles in catalysis is widespread, with the activity being attributed to their precise structural properties. We demonstrate the restructuring of AuPd nanoparticles under CO oxidation conditions using a combined XAFS/DRIFTS approach. The fresh catalyst exhibits PdO islands at the surface of the nanoparticles, which are reduced under reaction conditions, a process observed via both DRIFTS and Pd K-edge XAFS measurements. From the EXAFS analysis alone the nanoparticles were observed to have a Au rich core with an outer region of intimately mixed Au and Pd atoms. This structure was found to remain mostly unaltered throughout reaction. However, the DRIFTS spectra showed that although Au was present on the surface during the initial stages of reaction the surface rearranged just before light-off, and contained only Pd atoms thereafter. This study highlights the advantage of this combined approach, where both the surface structure and local environment of the constituent metals can be probed simultaneously, allowing a complete picture of the restructuring of these bimetallic particles to be obtained under reaction condition

    In situ spectroscopic investigations of MoOx/Fe2O3 catalysts for the selective oxidation of methanol

    Get PDF
    Multicomponent oxide shell@core catalysts have been prepared, affording overlayers of MoOx on Fe2O3. This design approach allows bulk characterization techniques, such as X-ray Absorption Fine Structure (XAFS), to provide surface sensitive information. Coupling this approach with in situ methodologies provides insights during crucial catalytic processes. Calcination studies were followed by a combination of XAFS and Raman, and demonstrate that amorphous multi-layers of MoOx are first converted to MoO3 before formation of Fe2(MoO4)3. However, a single overlayer of Oh Mo units remains at the surface at all times. In situ catalysis studies during formaldehyde production identified that Mo6+ was present throughout, confirming that gas phase oxygen transfer to molybdenum is rapid under reaction conditions. Reduction studies in the presence of MeOH resulted in the formation of reduced Mo–Mo clusters with a bonding distance of 2.6 Å. It is proposed that the presence of the clusters indicates that the selective conversion of MeOH to formaldehyde requires multiple Mo sites
    • …
    corecore