30 research outputs found

    Pan American Climate Studies (PACS) data report

    Get PDF
    The surface mooring component of the NOAA Pan American Climate Study (PACS) took place from April 1997 to September 1998 in the eastern tropical Pacific. PACS was a NOAA funded study with the goal of investigating links between sea surface temperature variability in the tropical oceans near the Americas and climate over the American continents. Two air-sea interaction surface moorings were deployed along 125°W, spanning a strong meridional sea-surface temperature gradient. One mooring site was located in the cold tongue south of the equator, and the other site was in the region of warm ocean found north of the equator, near the northernmost summer location of the Intertropical Convergence Zone. The moorings were deployed to improve our understanding of air-sea fluxes and the procsses that control the evolution of the sea surface temperature field in the region. Four air-sea interaction buoys were deployed to occupy two sites for a period of 17 months. The sites were along 125°W near 3°S and 10°N. The Upper Ocean Processes Group at WHOI deployed the first two moorings in April 1997. These moorings were replaced with a second pair of moorings in December 1997. The final recovery occurred in September 1998. Each of these buoys on these moorings were equipped with meteorological instrumentation, including a Vector Averaging Wind Recorder (VAWR) and an Improved METeorological (IMET) system. The moorings also carried Vector Measuring Current Meters (VMCMS), single point temperature recorders and a few conductivity sensors on the mooring line to monitor the upper 200m of the ocean. In addition to the traditional instruments, several other experimental instruments were deployed with limited success on the mooring line including acoustic current meters, acoustic rain gauges and bio-optical instrument packages. This report describes the instrumentation deployed on the PACS surface moorings, along with information on the processing and quality control of the returned data. It presents a detailed overview of the meteorological and physical oceanographic data including time series plots, statistics and spectra of key parameters. It also presents analysis of the estimated air-sea heat, moisture and momentum fluxes.Funding was provided by the National Oceanic and Atmospheric Administration Contract No. NA96GP0428

    The Marine light - mixed layer experiment cruise and data report, R/V Endeavor : cruise EN-224, mooring deployment, 27 April-1 May 1991, cruise EN-227, mooring recovery, 5-23 September 1991

    Get PDF
    The Marine Light - Mixed Layer experiment took place in the sub-Arctic North Atlantic ocean, approximately 275 miles south of Reykjavik, Iceland. The field program included a central surface mooring to document the temporal evolution of physical, biological and optical properties. The surface mooring was deployed at approximately 59°N, 21°W on 29 April 1991 and recovered on 6 September 1991. The Upper Ocean Processes Group of the Woods Hole Oceanographic Institution was responsible for design, preparation, deployment, and recovery of the mooring. The Group's contrbution to the field measurements included four different types of sensors: a meteorological observation package on the surface buoy, a string of 15 temperature sensors along the mooring line, an acoustic Doppler current profiler, and four instruments for measuring mooring tension and accelerations. The observations obtained from the mooring are sufficient to describe the air-sea fluxes and the local physical response to surface forcing. The objective in the analysis phase will be to determine the factors controlling this physical response and to work towards an understanding of the links among physical, biological, and optical processes. This report describes the deployment and recovery of the mooring, the meteorological data, and the subsurface temperature and current data.Funding was provided by the Office of Naval Research under Contract N00014-89-J-1683

    Stratus 9/VOCALS ninth setting of the Stratus Ocean Reference Station & VOCALS Regional Experiment

    Get PDF
    The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology; air-sea fluxes of heat, freshwater, and momentum; and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with cruises that have come between October and December. During the 2008 cruise on the NOAA ship Ronald H. Brown to the ORS Stratus site, the primary activities were recovery of the Stratus 8 WHOI surface mooring that had been deployed in October 2007, deployment of a new (Stratus 9) WHOI surface mooring at that site; in-situ calibration of the buoy meteorological sensors by comparison with instrumentation put on board by staff of the NOAA Earth System Research Laboratory (ESRL); and observations of the stratus clouds and lower atmosphere by NOAA ESRL. A buoy for the Pacific tsunami warning system was also serviced in collaboration with the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA). The DART (Deep-Ocean Assessment and Reporting of Tsunami) carries IMET sensors and subsurface oceanographic instruments. A DART II buoy was deployed north of the STRATUS buoy, by personnel from the National Data Buoy Center (NDBC) Argo floats and drifters were launched, and CTD casts carried out during the cruise. The ORS Stratus buoys are equipped with two Improved Meteorological (IMET) systems, which provide surface wind speed and direction, air temperature, relative humidity, barometric pressure, incoming shortwave radiation, incoming longwave radiation, precipitation rate, and sea surface temperature. Additionally, the Stratus 8 buoy received a partial CO2 detector from the Pacific Marine Environmental Laboratory (PMEL). IMET data are made available in near real time using satellite telemetry. The mooring line carries instruments to measure ocean salinity, temperature, and currents. The ESRL instrumentation used during the 2008 cruise included cloud radar, radiosonde balloons, and sensors for mean and turbulent surface meteorology. Finally, the cruise hosted a teacher participating in NOAA’s Teacher at Sea Program.Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 for the Cooperative Institute for Climate and Ocean Research (CICOR)

    Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases.

    Get PDF
    A recent meeting was held on March 22, 2019, among the FDA, clinical scientists, pharmaceutical and biotech companies, clinical trials cooperative groups, and patient advocacy groups to discuss challenges and potential solutions for increasing development of therapeutics for central nervous system metastases. A key issue identified at this meeting was the need for consistent tumor measurement for reliable tumor response assessment, including the first step of standardized image acquisition with an MRI protocol that could be implemented in multicenter studies aimed at testing new therapeutics. This document builds upon previous consensus recommendations for a standardized brain tumor imaging protocol (BTIP) in high-grade gliomas and defines a protocol for brain metastases (BTIP-BM) that addresses unique challenges associated with assessment of CNS metastases. The "minimum standard" recommended pulse sequences include: (i) parameter matched pre- and post-contrast inversion recovery (IR)-prepared, isotropic 3D T1-weighted gradient echo (IR-GRE); (ii) axial 2D T2-weighted turbo spin echo acquired after injection of gadolinium-based contrast agent and before post-contrast 3D T1-weighted images; (iii) axial 2D or 3D T2-weighted fluid attenuated inversion recovery; (iv) axial 2D, 3-directional diffusion-weighted images; and (v) post-contrast 2D T1-weighted spin echo images for increased lesion conspicuity. Recommended sequence parameters are provided for both 1.5T and 3T MR systems. An "ideal" protocol is also provided, which replaces IR-GRE with 3D TSE T1-weighted imaging pre- and post-gadolinium, and is best performed at 3T, for which dynamic susceptibility contrast perfusion is included. Recommended perfusion parameters are given

    Suppression of circulating IgD+CD27+ memory B cells in infants living in a malaria-endemic region of Kenya

    Get PDF
    Background: Plasmodium falciparum infection leads to alterations in B cell subset distribution. During infancy, development of peripheral B cell subsets is also occurring. However, it is unknown if infants living a malaria endemic region have alterations in B cell subsets that is independent of an age effect. Methods: To evaluate the impact of exposure to P. falciparum on B cell development in infants, flow cytometry was used to analyse the distribution and phenotypic characteristic of B cell subsets in infant cohorts prospectively followed at 12, 18 and 24 months from two geographically proximate regions in western Kenya with divergent malaria exposure i.e. Kisumu (malaria-endemic, n = 24) and Nandi (unstable malaria transmission, n = 21). Results: There was significantly higher frequency and absolute cell numbers of CD19+ B cells in Kisumu relative to Nandi at 12(p = 0.0440), 18(p = 0.0210) and 24 months (p = 0.0493). No differences were observed between the infants from the two sites in frequencies of naĂŻve B cells (IgD+CD27-) or classical memory B cells (IgD-CD27+). However, immature transitional B cells (CD19+CD10+CD34-) were higher in Kisumu relative to Nandi at all three ages. In contrast, the levels of non-class switched memory B cells (CD19+IgD+CD27+) were significantly lower overall in Kisumu relative to Nandi at significantly at 12 (p = 0.0144), 18 (p = 0.0013) and 24 months (p = 0.0129). Conclusions: These data suggest that infants living in malaria endemic regions have altered B cell subset distribution. Further studies are needed to understand the functional significance of these changes and long-term impact on ability of these infants to develop antibody responses to P. falciparum and heterologous infections

    Arabian Sea mixed layer dynamics experiment data report

    Get PDF
    The Arabian Sea is characterized by strong, large-scale atmospheric forcing during the summer (southwest) and winter (northeast) monsoons. To investigate air-sea interactions related to this unique surface forcing, a moored array was deployed from 15 October 1994 to 19 October 1995 just south of a region that experiences the climatological maximum winds during the summer monsoon. The array consisted of two Scripps Institution of Oceanography surface toroid buoys, two University of Washington subsurface moorings and a surface 3 m discus buoy deployed by the Woods Hole Oceanographic Institution (WHOI). The WHOI buoy carried redundant meteorological packages to measure wind speed and direction, air temperature, relative humidity, barometrc pressure, incoming short- and long-wave radiation and precipitation. Oceanographic instrumentation was deployed on the WHOI buoy's bridle and mooring line to collect time series of temperatue, salinity and velocity at various depths. Four multi-varable moored systems (MVMS) were also deployed along the mooring line by the Lamont-Doherty Earth Observatory and the University of California at Santa Barbara to record both bio-optical and physical parameters. This report describes the instrumentation deployed on the WHOI buoy and the processing and editing of the returned data. The data are then summarized in graphical and tabular formats.Funding provided by the Office of Naval Research under Contract No. N00014-94-1-0161

    Induction and decay of short-term heat acclimation

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright SpringerThe purpose of this work was to investigate adaptation and decay from short-term (5-day) heat acclimation (STHA). Ten moderately trained males (mean ± SD age 28 ± 7 years; body mass 74.6 ± 4.4 kg; 4.26 ± 0.37 l min−1) underwent heat acclimation (Acc) for 90-min on 5-days consecutively (T a = 39.5°C, 60% RH), under controlled hyperthermia (rectal temperature 38.5°C). Participants completed a heat stress test (HST) 1 week before acclimation (Acc), then on the 2nd and 8th day (1 week) following Acc (T a = 35°C, 60% RH). Seven participants completed HSTs 2 and 3 weeks after Acc. HST consisted of 90-min cycling at 40% peak power output before an incremental performance test. Rectal temperature at rest (37.1 ± 0.4°C) was not lowered by Acc (95% CI −0.3 to 0.2°C), after 90-min exercise (38.6 ± 0.5°C) it reduced 0.3°C (−0.5 to −0.1°C) and remained at this level 1 week later (−0.5 to −0.1°C), but not two (0.1°C −0.4 to 0.5°C; n = 7) or 3 weeks. Similarly, heart rate after 90-min exercise (146 ± 21 b min−1) was reduced (−13: −6 to −20 b min−1) and remained at this level after 1 week (−13: −6 to −20 b min−1) but not two (−9: 6 to −23 b min−1; n = 7) or 3 weeks. Performance (746 s) increased 106 s: 59 to 152 s after Acc and remained higher after one (76 s: 31 to 122) but not two (15 s: −88 to 142 s; n = 7) or 3 weeks. Therefore, STHA (5-day) induced adaptations permitting increased heat loss and this persisted 1 week but not 2 weeks following Acc.Peer reviewe

    Acanthosis Nigricans: high prevalence and association with diabetes in a practice-based research network consortium--a PRImary care Multi-Ethnic network (PRIME Net) study.

    No full text
    BACKGROUND: Previous work has established a surprisingly high prevalence of acanthosis nigricans (AN) and its association with increased risk of type 2 diabetes in a Southwestern practice-based research network (PBRN). Our objective was to establish whether this high prevalence of AN would be present in other areas. METHODS: We examined the prevalence of type 2 diabetes and its risk factors and the prevalence of AN among patients aged 7 to 65 years who had been seen by one of 86 participating clinicians in a national PBRN consortium during a 1-week data collection period. In a subsample of nondiabetic matched pairs who had or did not have AN, we compared fasting glucose, insulin, and lipid levels. RESULTS: AN was present in 19.4% of 1730 patients from among all age ranges studied. AN was most prevalent among persons with more risk factors for diabetes. Patients with AN were twice as likely as those without AN to have type 2 diabetes (35.4% vs 17.6%; P \u3c .001). In multivariable analysis, the prevalence ratio for diabetes was 2.1 (95% CI, 1.3-3.5) among non-Hispanic whites with AN and 1.4 (95% CI, 1.1-1.7) among minority patients with AN. In a subsample of 11 matched pairs, those with AN had higher levels of insulin and insulin resistance. CONCLUSIONS: We found high rates of AN among patients in primary care practices across the country. Patients with AN likely have multiple diabetes risk factors and are more likely to have diabetes
    corecore