27 research outputs found
Modified Gravity: the CMB, Weak Lensing and General Parameterisations
We examine general physical parameterisations for viable gravitational models
in the framework. This is related to the mass of an additional scalar
field, called the scalaron, that is introduced by the theories. Using a simple
parameterisation for the scalaron mass we show there is an exact
correspondence between the model and popular parameterisations of the modified
Poisson equation and the ratio of the Newtonian potentials
. However, by comparing the aforementioned model against other
viable scalaron theories we highlight that the common form of and
in the literature does not accurately represent behaviour.
We subsequently construct an improved description for the scalaron mass (and
therefore and ) which captures their essential features
and has benefits derived from a more physical origin. We study the scalaron's
observational signatures and show the modification to the background Friedmann
equation and CMB power spectrum to be small. We also investigate its effects in
the linear and non linear matter power spectrum--where the signatures are
evident--thus giving particular importance to weak lensing as a probe of these
models. Using this new form, we demonstrate how the next generation Euclid
survey will constrain these theories and its complementarity to current solar
system tests. In the most optimistic case Euclid, together with a Planck prior,
can constrain a fiducial scalaron mass at
the level. However, the decay rate of the scalaron mass, with
fiducial value , can be constrained to uncertainty
ASIRI : an ocean–atmosphere initiative for Bay of Bengal
Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 97 (2016): 1859–1884, doi:10.1175/BAMS-D-14-00197.1.Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.This work was sponsored by the U.S. Office of Naval Research (ONR) in an ONR Departmental Research Initiative (DRI), Air–Sea Interactions in Northern Indian Ocean (ASIRI), and in a Naval Research Laboratory project, Effects of Bay of Bengal Freshwater Flux on Indian Ocean Monsoon (EBOB). ASIRI–RAWI was funded under the NASCar DRI of the ONR. The Indian component of the program, Ocean Mixing and Monsoons (OMM), was supported by the Ministry of Earth Sciences of India.2017-04-2
Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits
Pigeonpea (Cajanus cajan), a tropical grain legume with low input requirements, is expected to continue to have an important role in supplying food and nutritional security in developing countries in Asia, Africa and the tropical Americas. From whole-genome resequencing of 292 Cajanus accessions encompassing breeding lines, landraces and wild species, we characterize genome-wide variation. On the basis of a scan for selective sweeps, we find several genomic regions that were likely targets of domestication and breeding. Using genome-wide association analysis, we identify associations between several candidate genes and agronomically important traits. Candidate genes for these traits in pigeonpea have sequence similarity to genes functionally characterized in other plants for flowering time control, seed development and pod dehiscence. Our findings will allow acceleration of genetic gains for key traits to improve yield and sustainability in pigeonpea