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Abstract

Euclid is a European Space Agency medium-class mission selected for launch in 2019 within
the Cosmic Vision 2015—-2025 program. The main goal of Euclid is to understand the origin
of the accelerated expansion of the universe. Euclid will explore the expansion history of the
universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies
as well as the distribution of clusters of galaxies over a large fraction of the sky.

Although the main driver for Euclid is the nature of dark energy, Euclid science covers a
vast range of topics, from cosmology to galaxy evolution to planetary research. In this review
we focus on cosmology and fundamental physics, with a strong emphasis on science beyond
the current standard models. We discuss five broad topics: dark energy and modified gravity,
dark matter, initial conditions, basic assumptions and questions of methodology in the data
analysis.

This review has been planned and carried out within Euclid’s Theory Working Group and
is meant to provide a guide to the scientific themes that will underlie the activity of the group
during the preparation of the Euclid mission.
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Introduction

Euclid! [551, 760, 239] is an ESA medium-class mission selected for the second launch slot (expected
for 2019) of the Cosmic Vision 2015—2025 program. The main goal of Euclid is to understand the
physical origin of the accelerated expansion of the universe. Euclid is a satellite equipped with a
1.2 m telescope and three imaging and spectroscopic instruments working in the visible and near-
infrared wavelength domains. These instruments will explore the expansion history of the universe
and the evolution of cosmic structures by measuring shapes and redshifts of galaxies over a large
fraction of the sky. The satellite will be launched by a Soyuz ST-2.1B rocket and transferred to
the L2 Lagrange point for a six-year mission that will cover at least 15000 square degrees of sky.
Euclid plans to image a billion galaxies and measure nearly 100 million galaxy redshifts.

These impressive numbers will allow Euclid to realize a detailed reconstruction of the clustering
of galaxies out to a redshift 2 and the pattern of light distortion from weak lensing to redshift 3. The
two main probes, redshift clustering and weak lensing, are complemented by a number of additional
cosmological probes: cross correlation between the cosmic microwave background and the large
scale structure; luminosity distance through supernovae Ia; abundance and properties of galaxy
clusters and strong lensing. To extract the maximum of information also in the nonlinear regime
of perturbations, these probes will require accurate high-resolution numerical simulations. Besides
cosmology, Euclid will provide an exceptional dataset for galaxy evolution, galaxy structure, and
planetary searches. All Euclid data will be publicly released after a relatively short proprietary
period and will constitute for many years the ultimate survey database for astrophysics.

A huge enterprise like Euclid requires highly considered planning in terms not only of technology
but also for the scientific exploitation of future data. Many ideas and models that today seem to
be abstract exercises for theorists will in fact finally become testable with the Euclid surveys. The
main science driver of Euclid is clearly the nature of dark energy, the enigmatic substance that is
driving the accelerated expansion of the universe. As we discuss in detail in Part 1, under the label
“dark energy” we include a wide variety of hypotheses, from extradimensional physics to higher-
order gravity, from new fields and new forces to large violations of homogeneity and isotropy. The
simplest explanation, Einstein’s famous cosmological constant, is still currently acceptable from
the observational point of view, but is not the only one, nor necessarily the most satisfying, as we
will argue. Therefore, it is important to identify the main observables that will help distinguish
the cosmological constant from the alternatives and to forecast Euclid’s performance in testing the
various models.

Since clustering and weak lensing also depend on the properties of dark matter, Euclid is a
dark matter probe as well. In Part 2 we focus on the models of dark matter that can be tested
with Euclid data, from massive neutrinos to ultra-light scalar fields. We show that FEuclid can
measure the neutrino mass to a very high precision, making it one of the most sensitive neutrino
experiments of its time, and it can help identify new light fields in the cosmic fluid.

The evolution of perturbations depends not only on the fields and forces active during the
cosmic eras, but also on the initial conditions. By reconstructing the initial conditions we open a
window on the inflationary physics that created the perturbations, and allow ourselves the chance
of determining whether a single inflaton drove the expansion or a mixture of fields. In Part 3
we review the choices of initial conditions and their impact on Euclid science. In particular we
discuss deviations from simple scale invariance, mixed isocurvature-adiabatic initial conditions,
non-Gaussianity, and the combined forecasts of Euclid and CMB experiments.

Practically all of cosmology is built on the Copernican Principle, a very fruitful idea postulating
a homogeneous and isotropic background. Although this assumption has been confirmed time
and again since the beginning of modern cosmology, Euclid’s capabilities can push the test to
new levels. In Part 4 we challenge some of the basic cosmological assumptions and predict how

1 Continuously updated information on Euclid is available on http://www.euclid-ec.org.
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well Euclid can constrain them. We explore the basic relation between luminosity and angular
diameter distance that holds in any metric theory of gravity if the universe is transparent to light,
and the existence of large violations of homogeneity and isotropy, either due to local voids or to
the cumulative stochastic effects of perturbations, or to intrinsically anisotropic vector fields or
spacetime geometry.

Finally, in Part 5 we review some of the statistical methods that are used to forecast the
performance of probes like Euclid, and we discuss some possible future developments.

This review has been planned and carried out within Euclid’s Theory Working Group and is
meant to provide a guide to the scientific themes that will underlie the activity of the group during
the preparation of the mission. At the same time, this review will help us and the community
at large to identify the areas that deserve closer attention, to improve the development of Euclid
science and to offer new scientific challenges and opportunities.
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Part 1: Dark Energy

1.1 Introduction

With the discovery of cosmic acceleration at the end of the 1990s, and its possible explanation
in terms of a cosmological constant, cosmology has returned to its roots in Einstein’s famous
1917 paper that simultaneously inaugurated modern cosmology and the history of the constant A.
Perhaps cosmology is approaching a robust and all-encompassing standard model, like its cousin,
the very successful standard model of particle physics. In this scenario, the cosmological standard
model could essentially close the search for a broad picture of cosmic evolution, leaving to future
generations only the task of filling in a number of important, but not crucial, details.

The cosmological constant is still in remarkably good agreement with almost all cosmological
data more than ten years after the observational discovery of the accelerated expansion rate of the
universe. However, our knowledge of the universe’s evolution is so incomplete that it would be
premature to claim that we are close to understanding the ingredients of the cosmological standard
model. If we ask ourselves what we know for certain about the expansion rate at redshifts larger
than unity, or the growth rate of matter fluctuations, or about the properties of gravity on large
scales and at early times, or about the influence of extra dimensions (or their absence) on our four
dimensional world, the answer would be surprisingly disappointing.

Our present knowledge can be succinctly summarized as follows: we live in a universe that is
consistent with the presence of a cosmological constant in the field equations of general relativity,
and as of 2012, the value of this constant corresponds to a fractional energy density today of
Qp ~ 0.73. However, far from being disheartening, this current lack of knowledge points to an
exciting future. A decade of research on dark energy has taught many cosmologists that this
ignorance can be overcome by the same tools that revealed it, together with many more that have
been developed in recent years.

Why then is the cosmological constant not the end of the story as far as cosmic acceleration is
concerned? There are at least three reasons. The first is that we have no simple way to explain its
small but non-zero value. In fact, its value is unexpectedly small with respect to any physically
meaningful scale, except the current horizon scale. The second reason is that this value is not
only small, but also surprisingly close to another unrelated quantity, the present matter-energy
density. That this happens just by coincidence is hard to accept, as the matter density is diluted
rapidly with the expansion of space. Why is it that we happen to live at the precise, fleeting epoch
when the energy densities of matter and the cosmological constant are of comparable magnitude?
Finally, observations of coherent acoustic oscillations in the cosmic microwave background (CMB)
have turned the notion of accelerated expansion in the very early universe (inflation) into an
integral part of the cosmological standard model. Yet the simple truth that we exist as observers
demonstrates that this early accelerated expansion was of a finite duration, and hence cannot be
ascribable to a true, constant A; this sheds doubt on the nature of the current accelerated expansion.
The very fact that we know so little about the past dynamics of the universe forces us to enlarge the
theoretical parameter space and to consider phenomenology that a simple cosmological constant
cannot accommodate.

These motivations have led many scientists to challenge one of the most basic tenets of physics:
Einstein’s law of gravity. Einstein’s theory of general relativity (GR) is a supremely successful
theory on scales ranging from the size of our solar system down to micrometers, the shortest
distances at which GR has been probed in the laboratory so far. Although specific predictions
about such diverse phenomena as the gravitational redshift of light, energy loss from binary pulsars,
the rate of precession of the perihelia of bound orbits, and light deflection by the sun are not unique
to GR, it must be regarded as highly significant that GR is consistent with each of these tests and
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more. We can securely state that GR has been tested to high accuracy at these distance scales.

The success of GR on larger scales is less clear. On astrophysical and cosmological scales, tests
of GR are complicated by the existence of invisible components like dark matter and by the effects
of spacetime geometry. We do not know whether the physics underlying the apparent cosmological
constant originates from modifications to GR (i.e., an extended theory of gravity), or from a new
fluid or field in our universe that we have not yet detected directly. The latter phenomena are
generally referred to as ‘dark energy’ models.

If we only consider observations of the expansion rate of the universe we cannot discriminate
between a theory of modified gravity and a dark-energy model. However, it is likely that these two
alternatives will cause perturbations around the ‘background’ universe to behave differently. Only
by improving our knowledge of the growth of structure in the universe can we hope to progress
towards breaking the degeneracy between dark energy and modified gravity. Part 1 of this review
is dedicated to this effort. We begin with a review of the background and linear perturbation
equations in a general setting, defining quantities that will be employed throughout. We then
explore the nonlinear effects of dark energy, making use of analytical tools such as the spherical
collapse model, perturbation theory and numerical N-body simulations. We discuss a number of
competing models proposed in literature and demonstrate what the Euclid survey will be able to
tell us about them.

1.2 Background evolution

Most of the calculations in this review are performed in the Friedmann-Lemaitre—Robertson—
Walker (FLRW) metric

dr?

2 2 2

+7r2dh* 4 r?sin? 0 d¢?) (1.2.1)
where a(t) is the scale factor and k the spatial curvature. The usual symbols for the Hubble
function H = a/a and the density fractions 2,,, where x stands for the component, are employed.
We characterize the components with the subscript M or m for matter, v or r for radiation,
b for baryons, K for curvature and A for the cosmological constant. Whenever necessary for
clarity, we append a subscript 0 to denote the present epoch, e.g., 57,0. Sometimes the conformal
time n = [dt/a and the conformal Hubble function H = aH = da/(adn) are employed. Unless
otherwise stated, we denote with a dot derivatives w.r.t. cosmic time ¢ (and sometimes we employ
the dot for derivatives w.r.t. conformal time 1) while we use a prime for derivatives with respect
to Ina.

The energy density due to a cosmological constant with p = —p is obviously constant over time.
This can easily be seen from the covariant conservation equation 7}, = 0 for the homogeneous
and isotropic FLRW metric,

p+3H(p+p) =0. (1.2.2)

However, since we also observe radiation with p = p/3 and non-relativistic matter for which p ~ 0,
it is natural to assume that the dark energy is not necessarily limited to a constant energy density,
but that it could be dynamical instead.

One of the simplest models that explicitly realizes such a dynamical dark energy scenario
is described by a minimally-coupled canonical scalar field evolving in a given potential. For this
reason, the very concept of dynamical dark energy is often associated with this scenario, and in this
context it is called ‘quintessence’ [954, 754]. In the following, the scalar field will be indicated with
¢. Although in this simplest framework the dark energy does not interact with other species and
influences spacetime only through its energy density and pressure, this is not the only possibility
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and we will encounter more general models later on. The homogeneous energy density and pressure
of the scalar field ¢ are defined as
12 #?

ps=— +tV(d), po

5 (6), wy="22, (1.2.3)

2 P

and wy is called the equation-of-state parameter. Minimally-coupled dark-energy models can allow
for attractor solutions [252, 573, 867]: if an attractor exists, depending on the potential V(¢) in
which dark energy rolls, the trajectory of the scalar field in the present regime converges to the
path given by the attractor, though starting from a wide set of different initial conditions for ¢
and for its first derivative d) Inverse power law and exponential potentials are typical examples of
potential that can lead to attractor solutions. As constraints on wg become tighter [e.g., 526], the
allowed range of initial conditions to follow into the attractor solution shrinks, so that minimally-
coupled quintessence is actually constrained to have very flat potentials. The flatter the potential,
the more minimally-coupled quintessence mimics a cosmological constant, the more it suffers from
the same fine-tuning and coincidence problems that affect a ACDM scenario [646].

However, when GR is modified or when an interaction with other species is active, dark energy
may very well have a non-negligible contribution at early times. Therefore, it is important, already
at the background level, to understand the best way to characterize the main features of the
evolution of quintessence and dark energy in general, pointing out which parameterizations are
more suitable and which ranges of parameters are of interest to disentangle quintessence or modified
gravity from a cosmological constant scenario.

In the following we briefly discuss how to describe the cosmic expansion rate in terms of a
small number of parameters. This will set the stage for the more detailed cases discussed in the
subsequent sections. Even within specific physical models it is often convenient to reduce the
information to a few phenomenological parameters.

Two important points are left for later: from Eq. (1.2.3) we can easily see that wy > —1 as
long as pg > 0, i.e., uncoupled canonical scalar field dark energy never crosses wg = —1. However,
this is not necessarily the case for non-canonical scalar fields or for cases where GR is modified.
We postpone to Section 1.4.5 the discussion of how to parametrize this ‘phantom crossing’ to avoid
singularities, as it also requires the study of perturbations.

The second deferred part on the background expansion concerns a basic statistical question:
what is a sensible precision target for a measurement of dark energy, e.g., of its equation of state?
In other words, how close to wg = —1 should we go before we can be satisfied and declare that
dark energy is the cosmological constant? We will address this question in Section 1.5.

1.2.1 Parametrization of the background evolution

If one wants to parametrize the equation of state of dark energy, two general approaches are possi-
ble. The first is to start from a set of dark-energy models given by the theory and to find parameters
describing their w, as accurately as possible. Only later can one try and include as many theo-
retical models as possible in a single parametrization. In the context of scalar-field dark-energy
models (to be discussed in Section 1.4.1), [266] parametrize the case of slow-rolling fields, [796]
study thawing quintessence, [446] and [232] include non-minimally coupled fields, [817] quintom
quintessence, [325] parametrize hilltop quintessence, [231] extend the quintessence parametrization
to a class of k-essence models, [159] study a common parametrization for quintessence and phan-
tom fields. Another convenient way to parametrize the presence of a non-negligible homogeneous
dark energy component at early times (usually labeled as EDE) was presented in [956]. We recall
it here because we will refer to this example in Section 1.6.1.1. In this case the equation of state
is parametrized as:

Wo

T 14bln(l+2z) (1.24)

wx (z)
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where b is a constant related to the amount of dark energy at early times, i.e.,

b _ 3wy

e, T (1.2.5)

Qx e Qom0

Here the subscripts ‘0’ and ‘e’ refer to quantities calculated today or early times, respectively.
With regard to the latter parametrization, we note that concrete theoretical and realistic models
involving a non-negligible energy component at early times are often accompanied by further
important modifications (as in the case of interacting dark energy), not always included in a
parametrization of the sole equation of state such as (1.2.4) (for further details see Section 1.6 on
nonlinear aspects of dark energy and modified gravity).

The second approach is to start from a simple expression of w without assuming any specific
dark-energy model (but still checking afterwards whether known theoretical dark-energy mod-
els can be represented). This is what has been done by [470, 623, 953] (linear and logarithmic
parametrization in z), [229], [584] (linear and power law parametrization in a), [322], [97] (rapidly
varying equation of state).

The most common parametrization, widely employed in this review, is the linear equation of
state [229, 584]

wx(a) =wy + we(l —a), (1.2.6)

where the subscript X refers to the generic dark-energy constituent. While this parametrization is
useful as a toy model in comparing the forecasts for different dark-energy projects, it should not be
taken as all-encompassing. In general a dark-energy model can introduce further significant terms
in the effective wyx () that cannot be mapped onto the simple form of Eq. (1.2.6).

An alternative to model-independent constraints is measuring the dark-energy density px(z)
(or the expansion history H(z)) as a free function of cosmic time [942, 881, 274]. Measuring px (z)
has advantages over measuring the dark-energy equation of state wx (z) as a free function; px (z)
is more closely related to observables, hence is more tightly constrained for the same number of
redshift bins used [942, 941]. Note that px(z) is related to wx(z) as follows [942]:

px(2) _ exp{/oz dz’ W} , (1.2.7)

Hence, parametrizing dark energy with wx(z) implicitly assumes that px(z) does not change
sign in cosmic time. This precludes whole classes of dark-energy models in which px (z) becomes
negative in the future (“Big Crunch” models, see [943] for an example) [944].

Note that the measurement of px(z) is straightforward once H(z) is measured from baryon
acoustic oscillations, and 2, is constrained tightly by the combined data from galaxy clustering,
weak lensing, and cosmic microwave background data — although strictly speaking this requires
a choice of perturbation evolution for the dark energy as well, and in addition one that is not
degenerate with the evolution of dark matter perturbations; see [534].

Another useful possibility is to adopt the principal component approach [468], which avoids
any assumption about the form of w and assumes it to be constant or linear in redshift bins, then
derives which combination of parameters is best constrained by each experiment.

For a cross-check of the results using more complicated parameterizations, one can use simple
polynomial parameterizations of w and ppg(z)/ppr(0) [939].

1.3 Perturbations

This section is devoted to a discussion of linear perturbation theory in dark-energy models. Since
we will discuss a number of non-standard models in later sections, we present here the main
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equations in a general form that can be adapted to various contexts. This section will identify
which perturbation functions the Euclid survey [551] will try to measure and how they can help
us to characterize the nature of dark energy and the properties of gravity.

1.3.1 Cosmological perturbation theory

Here we provide the perturbation equations in a dark-energy dominated universe for a general
fluid, focusing on scalar perturbations.

For simplicity, we consider a flat universe containing only (cold dark) matter and dark energy,
so that the Hubble parameter is given by

1da\? _ “ 14+ w(d
H2 = (adt) = H02 |:Qm0a 3 + (1 - leo) exp (_3/; ,()da>:| . (131)

a

We will consider linear perturbations on a spatially-flat background model, defined by the line of
element

ds? = a® [- (1 + 24) dn? + 2B;dnda’ + ((1 + 2H}) 6;5 + 2H7y;) da; da?] (1.3.2)

where A is the scalar potential; B; a vector shift; Hy, is the scalar perturbation to the spatial
curvature; Hy is the trace-free distortion to the spatial metric; dn = dt/a is the conformal time.

We will assume that the universe is filled with perfect fluids only, so that the energy momentum
tensor takes the simple form

™ = (p+p)utu” +p g" + 11", (1.3.3)

where p and p are the density and the pressure of the fluid respectively, u* is the four-velocity and
II#¥ is the anisotropic-stress perturbation tensor that represents the traceless component of the
T?
2
The components of the perturbed energy momentum tensor can be written as:

19 = — (p+ dp) (1.3.4)
T} = (p+p) (v; — Bj) (1.3.5)
To=(p+p) o' (1.3.6)
T; = (p+ 0p) 65 + p 1T (1.3.7)

Here p and p are the energy density and pressure of the homogeneous and isotropic background
universe, dp is the density perturbation, dp is the pressure perturbation, v* is the velocity vector.
Here we want to investigate only the scalar modes of the perturbation equations. So far the
treatment of the matter and metric is fully general and applies to any form of matter and metric.
We now choose the Newtonian gauge (also known as the longitudinal gauge), characterized by zero
non-diagonal metric terms (the shift vector B; = 0 and H = 0) and by two scalar potentials ¥
and ®; the metric Eq. (1.3.2) then becomes

ds* = a® [- (1+2¥) dnp® + (1 — 29) da; dz’] . (1.3.8)

The advantage of using the Newtonian gauge is that the metric tensor g,, is diagonal and this
simplifies the calculations. This choice not only simplifies the calculations but is also the most
intuitive one as the observers are attached to the points in the unperturbed frame; as a consequence,
they will detect a velocity field of particles falling into the clumps of matter and will measure their
gravitational potential, represented directly by ¥; ® corresponds to the perturbation to the spatial
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curvature. Moreover, as we will see later, the Newtonian gauge is the best choice for observational
tests (i.e., for perturbations smaller than the horizon).

In the conformal Newtonian gauge, and in Fourier space, the first-order perturbed Einstein
equations give [see 599, for more details]:

20 +3% (64 %0) = —4 2§ b 1.3.
k +3a —|—a wGa 2 Pala s (1.3.9)
w2 (é+ %) =4 2§ Do + Do )0a 1.3.1
< +a ) mGa CY(,o + Pa)ba (1.3.10)
<'1'>+9(\i1+2<i>)+ 2§—ﬁ \If+k—2(<l>—\lf)—47rGa2§ 5 (1.3.11)
a a a2 3 B — P e

K (@~ 0) = 127rGa® Y (po +Pa) o, (1.3.12)

where a dot denotes d/dn, §o, = 0pa/Pa, the index « indicates a sum over all matter components
in the universe and 7 is related to II% through:

— = 77 1 7
(p—l—p)?T = — (k’zk] — 35”> Hj. (1313)
The energy-momentum tensor components in the Newtonian gauge become:
TY = — (p+ 6p) (1.3.14)
ik Te = —ik;TY = (p+p) 0 (1.3.15)
T; = (p+ 6p) 0} + pIT; (1.3.16)

where we have defined the variable § = ik;v’ that represents the divergence of the velocity field.
Perturbation equations for a single fluid are obtained taking the covariant derivative of the
perturbed energy momentum tensor, i.e., T}/ = 0. We have

. . a (ép B

d=—(14w) (9 - 3<I>) - Sa <p - wd) for v=0 (1.3.17)

R 0 L S L)L A LN LR N (1.3.18)
a 14w 14+w

The equations above are valid for any fluid. The evolution of the perturbations depends on the
characteristics of the fluids considered, i.e., we need to specify the equation of state parameter w,
the pressure perturbation dp and the anisotropic stress w. For instance, if we want to study how
matter perturbations evolve, we simply substitute w = dp = # = 0 (matter is pressureless) in the
above equations. However, Eqs. (1.3.17)—(1.3.18) depend on the gravitational potentials ¥ and
®, which in turn depend on the evolution of the perturbations of the other fluids. For instance, if
we assume that the universe is filled by dark matter and dark energy then we need to specify dp
and 7 for the dark energy.

The problem here is not only to parameterize the pressure perturbation and the anisotropic
stress for the dark energy (there is not a unique way to do it, see below, especially Section 1.4.5
for what to do when w crosses —1) but rather that we need to run the perturbation equations for
each model we assume, making predictions and compare the results with observations. Clearly,
this approach takes too much time. In the following Section 1.3.2 we show a general approach to
understanding the observed late-time accelerated expansion of the universe through the evolution
of the matter density contrast.

In the following, whenever there is no risk of confusion, we remove the overbars from the
background quantities.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2013-6


http://www.livingreviews.org/lrr-2013-6

Cosmology and Fundamental Physics with the Euclid Satellite 23

1.3.2 Modified growth parameters

Even if the expansion history, H(z), of the FLRW background has been measured (at least up
to redshifts ~ 1 by supernova data), it is not yet possible yet to identify the physics causing the
recent acceleration of the expansion of the universe. Information on the growth of structure at
different scales and different redshifts is needed to discriminate between models of dark energy
(DE) and modified gravity (MG). A definition of what we mean by DE and MG will be postponed
to Section 1.4.

An alternative to testing predictions of specific theories is to parameterize the possible depar-
tures from a fiducial model. Two conceptually-different approaches are widely discussed in the
literature:

e Model parameters capture the degrees of freedom of DE/MG and modify the evolution equa-
tions of the energy-momentum content of the fiducial model. They can be associated with
physical meanings and have uniquely-predicted behavior in specific theories of DE and MG.

e Trigger relations are derived directly from observations and only hold in the fiducial model.
They are constructed to break down if the fiducial model does not describe the growth of
structure correctly.

As the current observations favor concordance cosmology, the fiducial model is typically taken to
be spatially lat FLRW in GR with cold dark matter and a cosmological constant, hereafter referred
to as ACDM.

For a large-scale structure and weak lensing survey the crucial quantities are the matter-density
contrast and the gravitational potentials and we therefore focus on scalar perturbations in the
Newtonian gauge with the metric (1.3.8).

We describe the matter perturbations using the gauge-invariant comoving density contrast
Anr = 0y + 3aHOy /k? where 03 and 0y are the matter density contrast and the divergence of
the fluid velocity for matter, respectively. The discussion can be generalized to include multiple
fluids.

In ACDM, after radiation-matter equality there is no anisotropic stress present and the Einstein
constraint equations at “sub-Hubble scales” k > aH become

— k2® = 4nGa’pp A, O =V. (1.3.19)

These can be used to reduce the energy-momentum conservation of matter simply to the second-

order growth equation

1o+ 24 (InHY A}, = gQM(a)AM. (1.3.20)

Primes denote derivatives with respect to Ina and we define the time-dependent fractional matter
density as Qar(a) = 87Gpar(a)/(3H?). Notice that the evolution of Ajps is driven by Qu(a)
and is scale-independent throughout (valid on sub- and super-Hubble scales after radiation-matter
equality). We define the growth factor G(a) as A = AgG(a). This is very well approximated by
the expression

G(a) ~ exp {/la da—(f/ [QM(a’)"’]} (1.3.21)
and
= o8 g ey (1.3.22)

fq

defines the growth rate and the growth index « that is found to be 5 ~ 0.545 for the ACDM
solution [see 937, 585, 466, 363].

- dloga
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Clearly, if the actual theory of structure growth is not the ACDM scenario, the constraints
(1.3.19) will be modified, the growth equation (1.3.20) will be different, and finally the growth
factor (1.3.21) is changed, i.e., the growth index is different from v, and may become time and
scale dependent. Therefore, the inconsistency of these three points of view can be used to test the
ACDM paradigm.

1.3.2.1 Two new degrees of freedom

Any generic modification of the dynamics of scalar perturbations with respect to the simple scenario
of a smooth dark-energy component that only alters the background evolution of ACDM can be
represented by introducing two new degrees of freedom in the Einstein constraint equations. We
do this by replacing (1.3.19) with

— k*® = 47GQ(a, k)a’parAas ® =n(a, k). (1.3.23)

Non-trivial behavior of the two functions @) and 7 can be due to a clustering dark-energy component
or some modification to GR. In MG models the function Q(a, k) represents a mass screening effect
due to local modifications of gravity and effectively modifies Newton’s constant. In dynamical DE
models @ represents the additional clustering due to the perturbations in the DE. On the other
hand, the function n(a, k) parameterizes the effective anisotropic stress introduced by MG or DE,
which is absent in ACDM.

Given an MG or DE theory, the scale- and time-dependence of the functions ¢ and 7 can
be derived and predictions projected into the (Q,n) plane. This is also true for interacting dark
sector models, although in this case the identification of the total matter density contrast (DM plus
baryonic matter) and the galaxy bias become somewhat contrived [see, e.g., 848, for an overview
of predictions for different MG/DE models].

Using the above-defined modified constraint equations (1.3.23), the conservation equations of
matter perturbations can be expressed in the following form (see [737])

/ In—1+(@Q)9 g —3(nH)'/Q 0y
ME TR, B MAM T T a0 al
3
0%y = —0n — §aHQM%AM, (1.3.24)

where we define g = k/(aH+/Q). Remember Qy = Qps(a) as defined above. Notice that it
is @Q/n that modifies the source term of the 65, equation and therefore also the growth of Ajyy.
Together with the modified Einstein constraints (1.3.23) these evolution equations form a closed
system for (Aps, 0y, @, V) which can be solved for given (Q, 7).

The influence of the Hubble scale is modified by @, such that now the size of xg determines
the behavior of Ajs; on “sub-Hubble” scales, xg > 1, we find

vt 2+ (InH)TA)Y = gQM(a)%AM (1.3.25)

and 0y = —aHA';. The growth equation is only modified by the factor /7 on the RHS with
respect to ACDM (1.3.20). On “super-Hubble” scales, g < 1, we have

2 (InH) 1
Ay=—[1/n—-1+( TA — —
== [1/n =1+ QY] Ay + 55— = - 50,
;o 3 Q
M = 791\/[ — §QM aHgA]\/[. (1326)
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@ and 1 now create an additional drag term in the Aj; equation, except if > 1 when the drag
term could flip sign. [737] also showed that the metric potentials evolve independently and scale-
invariantly on super-Hubble scales as long as xg — 0 for £ — 0. This is needed for the comoving
curvature perturbation, , to be constant on super-Hubble scales.

Many different names and combinations of the above defined functions (@, ) have been used in
the literature, some of which are more closely related to actual observables and are less correlated
than others in certain situations [see, e.g., 41, 667, 848, 737, 278, 277, 363].

For instance, as observed above, the combination /7 modifies the source term in the growth
equation. Moreover, peculiar velocities are following gradients of the Newtonian potential, ¥, and
therefore the comparison of peculiar velocities with the density field is also sensitive to @/n. So
we define

p=Q/n = —k*U = 4nGa*p(a, k)par Do - (1.3.27)

Weak lensing and the integrated Sachs—Wolfe (ISW) effect, on the other hand, are measuring

(® + ¥)/2, which is related to the density field via

Y=-Q1+1/n) = %u(n +1) = —k*(® + V) = 87Ga*Y(a, k)prrAas - (1.3.28)

N =

A summary of different other variables used was given by [278]. For instance, the gravitational
slip parameter introduced by [194] and widely used is related through w = 1/n— 1. Recently [277]
used {G =%, p=Q, V= u}, while [115] defined R = 1/7. All these variables reflect the same
two degrees of freedom additional to the linear growth of structure in ACDM.

Any combination of two variables out of {Q,n, i, %, ...} is a valid alternative to (Q,n). It turns
out that the pair (u, X) is particularly well suited when CMB, WL and LSS data are combined as
it is less correlated than others [see 980, 277, 68].

1.3.2.2 Parameterizations and non-parametric approaches

So far we have defined two free functions that can encode any departure of the growth of linear
perturbations from ACDM. However, these free functions are not measurable, but have to be
inferred via their impact on the observables. Therefore, one needs to specify a parameterization of,
e.g., (Q,n) such that departures from ACDM can be quantified. Alternatively, one can use non-
parametric approaches to infer the time and scale-dependence of the modified growth functions
from the observations.

Ideally, such a parameterization should be able to capture all relevant physics with the least
number of parameters. Useful parameterizations can be motivated by predictions for specific
theories of MG/DE [see 848] and/or by pure simplicity and measurability [see 41]. For instance,
[980] and [278] use scale-independent parameterizations that model one or two smooth transitions
of the modified growth parameters as a function of redshift. [115] also adds a scale dependence to
the parameterization, while keeping the time-dependence a simple power law:

Qa,k) =1+ [Qoe /e + Quo(1 — ek —1] a®,

n(a, k)™ =1+ [Roe_k/kc + Roo(1 — e F/key — 1} a®, (1.3.29)

with constant Qo, Qx, Ro, R, s and k.. Generally, the problem with any kind of parameterization
is that it is difficult — if not impossible — for it to be flexible enough to describe all possible
modifications.

Daniel et al. [278, 277] investigate the modified growth parameters binned in z and k. The
functions are taken constant in each bin. This approach is simple and only mildly dependent on
the size and number of the bins. However, the bins can be correlated and therefore the data might
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not be used in the most efficient way with fixed bins. Slightly more sophisticated than simple
binning is a principal component analysis (PCA) of the binned (or pixelized) modified growth
functions. In PCA uncorrelated linear combinations of the original pixels are constructed. In
the limit of a large number of pixels the model dependence disappears. At the moment however,
computational cost limits the number of pixels to only a few. Zhao et al. [982, 980] employ a
PCA in the (u,n) plane and find that the observables are more strongly sensitive to the scale-
variation of the modified growth parameters rather than the time-dependence and their average
values. This suggests that simple, monotonically or mildly-varying parameterizations as well as
only time-dependent parameterizations are poorly suited to detect departures from ACDM.

1.3.2.3 Trigger relations

A useful and widely popular trigger relation is the value of the growth index v in ACDM. It turns
out that the value of v can also be fitted also for simple DE models and sub-Hubble evolution in
some MG models [see, e.g., 585, 466, 587, 586, 692, 363]. For example, for a non-clustering perfect
fluid DE model with equation of state w(z) the growth factor G(a) given in (1.3.21) with the fitting
formula

v =0.554+0.05[14+w(z =1)] (1.3.30)

is accurate to the 1073 level compared with the actual solution of the growth equation (1.3.20).

Generally, for a given solution of the growth equation the growth index can simply be computed

using

In(Ah) —In Ay
In Q]\/[(a)

The other way round, the modified gravity function p can be computed for a given ~ [737]

Y(a, k) = (1.3.31)

2
o= gszx;l(a) Q) (a) +2+ (InH) — 3y ++ In~]. (1.3.32)

The fact that the value of v is quite stable in most DE models but strongly differs in MG
scenarios means that a large deviation from v, signifies the breakdown of GR, a substantial DE
clustering or a breakdown of another fundamental hypothesis like near-homogeneity. Furthermore,
using the growth factor to describe the evolution of linear structure is a very simple and com-
putationally cheap way to carry out forecasts and compare theory with data. However, several
drawbacks of this approach can be identified:

e As only one additional parameter is introduced, a second parameter, such as 7, is needed to
close the system and be general enough to capture all possible modifications.

e The growth factor is a solution of the growth equation on sub-Hubble scales and, therefore,
is not general enough to be consistent on all scales.

e The framework is designed to describe the evolution of the matter density contrast and is
not easily extended to describe all other energy-momentum components and integrated into
a CMB-Boltzmann code.

1.4 Models of dark energy and modified gravity

In this section we review a number of popular models of dynamical DE and MG. This section is
more technical than the rest and it is meant to provide a quick but self-contained review of the
current research in the theoretical foundations of DE models. The selection of models is of course
somewhat arbitrary but we tried to cover the most well-studied cases and those that introduce
new and interesting observable phenomena.
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1.4.1 Quintessence

In this review we refer to scalar field models with canonical kinetic energy in Einstein’s gravity as
“quintessence models”. Scalar fields are obvious candidates for dark energy, as they are for the
inflaton, for many reasons: they are the simplest fields since they lack internal degrees of freedom,
do not introduce preferred directions, are typically weakly clustered (as discussed later on), and
can easily drive an accelerated expansion. If the kinetic energy has a canonical form, the only
degree of freedom is then provided by the field potential (and of course by the initial conditions).
The typical requirement is that the potentials are flat enough to lead to the slow-roll inflation
today with an energy scale ppg ~ 10_123mé1 and a mass scale mg S 10733 eV.

Quintessence models are the protoypical DE models [195] and as such are the most studied
ones. Since they have been explored in many reviews of DE, we limit ourselves here to a few
remarks.?

The quintessence model is described by the action

/d%r { R+ @] + Sy,  Ly= f%gwamam ~V(4), (1.4.1)

where k2 = 87G and R is the Ricci scalar and Sy is the matter action. The fluid satisfies the
continuity equation

p'M+3H(pM +pM) =0. (1.4.2)

The energy-momentum tensor of quintessence is

W _ __2 S(/TGLy)
T = - =" (1.4.3)
= 0,00,0 — v | 50°°0a0050 + V(9)| (1.4.4)

As we have already seen, in a FLRW background, the energy density p, and the pressure py of
the field are
i@ _ 1

ST =28 vi), (145)

Py = 0(¢ ¢2 +V(p), pg=

which give the equation of state

_pp  $*—2V(9)

=—=—" 1.4.6
BT T Bravie) 140
In the flat universe, Einstein’s equations give the following equations of motion:
5 K21,
H* = 3 §¢ +V(®) +pm| (1.4.7)
. 1432 9
H=-= (¢ + pur +pM) : (1.4.8)
where 2 = 87G. The variation of the action (1.4.1) with respect to ¢ gives
¢+3Hp+Vy=0, (1.4.9)

2 This subsection is based on [49].
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where V., = dV/d¢.

During radiation or matter dominated epochs, the energy density pp; of the fluid dominates
over that of quintessence, i.e., par > pg. If the potential is steep so that the condition (;52/2 > V(g)
is always satisfied, the field equation of state is given by wy ~ 1 from Eq. (1.4.6). In this case the
energy density of the field evolves as py o a~%, which decreases much faster than the background
fluid density.

The condition wy < —1/3 is required to realize the late-time cosmic acceleration, which trans-
lates into the condition q32 < V(o). Hence the scalar potential needs to be shallow enough for the
field to evolve slowly along the potential. This situation is similar to that in inflationary cosmology
and it is convenient to introduce the following slow-roll parameters [104]

_ 1 Ve ? _ Vo
s = : , g = —2 1.4.10
¢ 2K2 ( V ) " K2V ( )

If the conditions e, < 1 and |ns| < 1 are satisfied, the evolution of the field is sufficiently slow so
that ¢? < V(¢) and |¢| < |3H@| in Egs. (1.4.7) and (1.4.9).
From Eq. (1.4.9) the deviation of wy from —1 is given by

2
Vi

1 -
e 9H2(& + 1)2py

(1.4.11)

where & = ¢/(3H¢). This shows that wg is always larger than —1 for a positive potential and
energy density. In the slow-roll limit, |£,| < 1 and ¢%/2 < V(¢), we obtain 1 + wg ~ 2¢,/3
by neglecting the matter fluid in Eq. (1.4.7), i.e., 3H? ~ £?V(¢). The deviation of wg from —1
is characterized by the slow-roll parameter €s;. It is also possible to consider Eq. (1.4.11) as a
prescription for the evolution of the potential given wy(2) and to reconstruct a potential that gives
a desired evolution of the equation of state (subject to w € [—1,1]). This was used, for example,
in [102].

However, in order to study the evolution of the perturbations of a quintessence field it is not
even necessary to compute the field evolution explicitly. Rewriting the perturbation equations of
the field in terms of the perturbations of the density contrast ¢4 and the velocity 6 in the conformal
Newtonian gauge, one finds [see, e.g., 536, Appendix A] that they correspond precisely to those of a
fluid, (1.3.17) and (1.3.18), with 7 = 0 and dp = ¢26p+3aH (¢ —c2)(1+w)pd/k* with ¢2 = 1. The
adiabatic sound speed, c,, is defined in Eq. (1.4.31). The large value of the sound speed 2, equal
to the speed of light, means that quintessence models do not cluster significantly inside the horizon
[see 785, 786, and Section 1.8.6 for a detailed analytical discussion of quintessence clustering and
its detectability with future probes, for arbitrary c2].

Many quintessence potentials have been proposed in the literature. A simple crude classification
divides them into two classes, (i) “freezing” models and (ii) “thawing” models [196]. In class (i)
the field was rolling along the potential in the past, but the movement gradually slows down after
the system enters the phase of cosmic acceleration. The representative potentials that belong to
this class are

(i) Freezing models

o V(p)=M*""¢p"" (n>0),
o V(p) = Mg exp(a¢2/m§1) )

The former potential does not possess a minimum and hence the field rolls down the potential
toward infinity. This appears, for example, in the fermion condensate model as a dynamical
supersymmetry breaking [138]. The latter potential has a minimum at which the field is eventually
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trapped (corresponding to wy = —1). This potential can be constructed in the framework of
supergravity [170].

In thawing models (ii) the field (with mass my) has been frozen by Hubble friction (i.e., the
term H¢ in Eq. (1.4.9)) until recently and then it begins to evolve once H drops below mg. The
equation of state of DE is wg =~ —1 at early times, which is followed by the growth of wg. The
representative potentials that belong to this class are

(ii) Thawing models

o V($) = Vot M*¢" (n>0),
* V(¢) = M'cos*(9/f).

The former potential is similar to that of chaotic inflation (n = 2,4) used in the early universe
(with Vo = 0) [577], while the mass scale M is very different. The model with n = 1 was proposed
by [487] in connection with the possibility to allow for negative values of V(¢). The universe will
collapse in the future if the system enters the region with V(¢) < 0. The latter potential appears
as a potential for the Pseudo-Nambu—Goldstone Boson (PNGB). This was introduced by [370] in
response to the first tentative suggestions that the universe may be dominated by the cosmological
constant. In this model the field is nearly frozen at the potential maximum during the period
in which the field mass my is smaller than H, but it begins to roll down around the present
(m¢ >~ Ho)

Potentials can also be classified in several other ways, e.g., on the basis of the existence of
special solutions. For instance, tracker solutions have approximately constant wy and €2, along
special attractors. A wide range of initial conditions converge to a common, cosmic evolutionary
tracker. Early DE models contain instead solutions in which DE was not negligible even during the
last scattering. While in the specific Euclid forecasts section (1.8) we will not explicitly consider
these models, it is worthwhile to note that the combination of observations of the CMB and of large
scale structure (such as Euclid) can dramatically constrain these models drastically improving the
inverse area figure of merit compared to current constraints, as discussed in [467].

1.4.2 K-essence

In a quintessence model it is the potential energy of a scalar field that leads to the late-time
acceleration of the expansion of the universe; the alternative, in which the kinetic energy of the
scalar field which dominates, is known as k-essence. Models of k-essence are characterized by an
action for the scalar field of the following form

S = /d4x vV—gp(¢,X), (1.4.12)
where X = (1/2)g"V ,6V,¢. The energy density of the scalar field is given by

dp
—9X -~ —p, 1.4.13
Po Ix P ( )
and the pressure is simply py = p(¢, X ). Treating the k-essence scalar as a perfect fluid, this means
that k-essence has the equation of state

_Po _ _ P (1.4.14)

w., )
¢ P p—2Xp,x

where the subscript ,x indicates a derivative with respect to X. Clearly, with a suitably chosen p
the scalar can have an appropriate equation of state to allow it to act as dark energy.
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The dynamics of the k-essence field are given by a continuity equation

Py = —3H(py + ) , (1.4.15)

or equivalently by the scalar equation of motion

op  Op
nv 2 _ — 141
GHVuVud+2X oo = 55 =0, (1.4.16)
where 5 92
wr _ 9P D ou v
G ax 9"t VieVe. (1.4.17)

For this second order equation of motion to be hyperbolic, and hence physically meaningful, we
must impose

14+2x2XX 5. (1.4.18)

p,x
K-essence was first proposed by [61, 62], where it was also shown that tracking solutions to this
equation of motion, which are attractors in the space of solutions, exist during the radiation and
matter-dominated eras for k-essence in a similar manner to quintessence.
The speed of sound for k-essence fluctuation is

2 D, x
G =—"77"TH+ . 1.4.19
p,x +2Xp,xx ( )

So that whenever the kinetic terms for the scalar field are not linear in X, the speed of sound
of fluctuations differs from unity. It might appear concerning that superluminal fluctuations are
allowed in k-essence models, however it was shown in [71] that this does not lead to any causal
paradoxes.

1.4.3 A definition of modified gravity

In this review we often make reference to DE and MG models. Although in an increasing number
of publications a similar dichotomy is employed, there is currently no consensus on where to draw
the line between the two classes. Here we will introduce an operational definition for the purpose
of this document.

Roughly speaking, what most people have in mind when talking about standard dark energy are
models of minimally-coupled scalar fields with standard kinetic energy in 4-dimensional Einstein
gravity, the only functional degree of freedom being the scalar potential. Often, this class of model
is referred to simply as “quintessence”. However, when we depart from this picture a simple
classification is not easy to draw. One problem is that, as we have seen in the previous sections,
both at background and at the perturbation level, different models can have the same observational
signatures [537]. This problem is not due to the use of perturbation theory: any modification to
Einstein’s equations can be interpreted as standard Einstein gravity with a modified “matter”
source, containing an arbitrary mixture of scalars, vectors and tensors [457, 535].

The simplest example can be discussed by looking at Eqgs. (1.3.23). One can modify gravity and
obtain a modified Poisson equation, and therefore ) # 1, or one can introduce a clustering dark
energy (for example a k-essence model with small sound speed) that also induces the same @ # 1
(see Eq. 1.3.23). This extends to the anisotropic stress n: there is in general a one-to-one relation
at first order between a fluid with arbitrary equation of state, sound speed, and anisotropic stress
and a modification of the Einstein-Hilbert Lagrangian.

Therefore, we could simply abandon any attempt to distinguish between DE and MG, and
just analyse different models, comparing their properties and phenomenology. However, there
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is a possible classification that helps us set targets for the observations, which is often useful in
concisely communicating the results of complex arguments. In this review, we will use the following
notation:

e Standard dark energy: These are models in which dark energy lives in standard Einstein
gravity and does not cluster appreciably on sub-horizon scales. As already noted, the prime
example of a standard dark-energy model is a minimally-coupled scalar field with standard
kinetic energy, for which the sound speed equals the speed of light.

o (lustering dark energy: In clustering dark-energy models, there is an additional contribution
to the Poisson equation due to the dark-energy perturbation, which induces @ # 1. However,
in this class we require n = 1, i.e., no extra effective anisotropic stress is induced by the extra
dark component. A typical example is a k-essence model with a low sound speed, ¢ < 1.

e Explicit modified gravity models: These are models where from the start the Einstein equa-
tions are modified, for example scalar-tensor and f(R) type theories, Dvali-Gabadadze—
Porrati (DGP) as well as interacting dark energy, in which effectively a fifth force is intro-
duced in addition to gravity. Generically they change the clustering and/or induce a non-zero
anisotropic stress. Since our definitions are based on the phenomenological parameters, we
also add dark-energy models that live in Einstein’s gravity but that have non-vanishing
anisotropic stress into this class since they cannot be distinguished by cosmological observa-
tions.

Notice that both clustering dark energy and explicit modified gravity models lead to deviations
from what is often called ‘general relativity’ (or, like here, standard dark energy) in the literature
when constraining extra perturbation parameters like the growth index 7. For this reason we
generically call both of these classes MG models. In other words, in this review we use the simple
and by now extremely popular (although admittedly somewhat misleading) expression “modified
gravity” to denote models in which gravity is modified and/or dark energy clusters or interacts
with other fields. Whenever we feel useful, we will remind the reader of the actual meaning of the
expression “modified gravity” in this review.

Therefore, on sub-horizon scales and at first order in perturbation theory our definition of MG
is straightforward: models with Q@ = n =1 (see Eq. 1.3.23) are standard DE, otherwise they are
MG models. In this sense the definition above is rather convenient: we can use it to quantify, for
instance, how well Euclid will distinguish between standard dynamical dark energy and modified
gravity by forecasting the errors on @), 7n or on related quantities like the growth index -y.

On the other hand, it is clear that this definition is only a practical way to group different
models and should not be taken as a fundamental one. We do not try to set a precise threshold
on, for instance, how much dark energy should cluster before we call it modified gravity: the
boundary between the classes is therefore left undetermined but we think this will not harm the
understanding of this document.

1.4.4 Coupled dark-energy models

A first class of models in which dark energy shows dynamics, in connection with the presence of a
fifth force different from gravity, is the case of ‘interacting dark energy’: we consider the possibility
that dark energy, seen as a dynamical scalar field, may interact with other components in the
universe. This class of models effectively enters in the “explicit modified gravity models” in the
classification above, because the gravitational attraction between dark matter particles is modified
by the presence of a fifth force. However, we note that the anisotropic stress for DE is still zero in
the Einstein frame, while it is, in general, non-zero in the Jordan frame. In some cases (when a
universal coupling is present) such an interaction can be explicitly recast in a non-minimal coupling
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to gravity, after a redefinition of the metric and matter fields (Weyl scaling). We would like to
identify whether interactions (couplings) of dark energy with matter fields, neutrinos or gravity
itself can affect the universe in an observable way.

In this subsection we give a general description of the following main interacting scenarios:

1. couplings between dark energy and baryons;

2. couplings between dark energy and dark matter (coupled quintessence);

3. couplings between dark energy and neutrinos (growing neutrinos, MaVaNs);
4. universal couplings with all species (scalar-tensor theories and f(R)).

In all these cosmologies the coupling introduces a fifth force, in addition to standard gravitational
attraction. The presence of a new force, mediated by the DE scalar field (sometimes called the
‘cosmon’ [954], seen as the mediator of a cosmological interaction) has several implications and
can significantly modify the process of structure formation. We will discuss cases (2) and (3) in
Section 2.

In these scenarios the presence of the additional interaction couples the evolution of components
that in the standard A-FLRW would evolve independently. The stress-energy tensor T#, of each
species is, in general, not conserved — only the total stress-energy tensor is. Usually, at the level
of the Lagrangian, the coupling is introduced by allowing the mass m of matter fields to depend
on a scalar field ¢ via a function m(¢) whose choice specifies the interaction. This wide class of
cosmological models can be described by the following action:

S= / d'ey/—g [—;aww — U(¢) — (&)t + Lian[] |, (1.4.20)

where U(¢) is the potential in which the scalar field ¢ rolls, ¢ describes matter fields, and g is
defined in the usual way as the determinant of the metric tensor, whose background expression is
g = diag[—a?,a?,a?, a?].

For a general treatment of background and perturbation equations we refer to [514, 33, 35, 724].
Here the coupling of the dark-energy scalar field to a generic matter component (denoted by index

@) is treated as an external source Q(,), in the Bianchi identities:

VVT(VQ)/J, = Q(a),u, ) (1421)
with the constraint
> Qay = 0. (1.4.22)
The zero component of (1.4.21) gives the background conservation equations:
dpg do
e — _3H(1 — (1 = 3wya) pa 1.4.23
T2 = —SH(1+ wg)ps + BO) T (1~ Bun)p (1.4.23)
dpa d¢
e 39401 o) Po — —(1 — 3wa)pa , 1.4.24
i AL+ wa)pa = B(9) g (1 = 3wa)p (1.4.24)

for a scalar field ¢ coupled to one single fluid « with a function (¢), which in general may not be
constant. The choice of the mass function m(¢) corresponds to a choice of 3(¢) and equivalently
to a choice of the source Q(4), and specifies the strength of the coupling according to the following
relations:

dlnm B
Q(qﬁ)u = TWS)TOL a;t(ybv Mo = Mg € B(¢)¢7 (1425)
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where m,, is the constant Jordan-frame bare mass. The evolution of dark energy is related to the
trace Ty, and, as a consequence, to density and pressure of the species a. We note that a description
of the coupling via an action such as (1.4.20) is originally motivated by the wish to modify GR
with an extension such as scalar-tensor theories. In general, one of more couplings can be active
[176].

As for perturbation equations, it is possible to include the coupling in a modified Euler equation:

dv, d
oy (H—ﬁ(¢)£> Vo = V [y + ] = 0. (1.4.26)

The Euler equation in cosmic time (dt = adr) can also be rewritten in the form of an acceleration
equation for particles at position r:

Gamg

Vo =—Hv, -V

1.4.27
’ (1.4.27)
The latter expression explicitly contains all the main ingredients that affect dark-energy interac-
tions:

1. a fifth force V [®, + 3¢] with an effective G, = Gn[1 +268%(9)] ;

2. a velocity dependent term Hv,=H (1 — B((b)%) Va

3. a time-dependent mass for each particle «, evolving according to (1.4.25).

The relative significance of these key ingredients can lead to a variety of potentially observable
effects, especially on structure formation. We will recall some of them in the following subsections
as well as, in more detail, for two specific couplings in the dark matter section (2.11, 2.9) of this
report.

1.4.4.1 Dark energy and baryons

A coupling between dark energy and baryons is active when the baryon mass is a function of the
dark-energy scalar field: my, = mp(¢). Such a coupling is constrained to be very small: main
bounds come from tests of the equivalence principle and solar system constraints [130]. More
in general, depending on the coupling, bounds on the variation of fundamental constants over
cosmological time-scales may have to be considered ([631, 303, 304, 639] and references therein).
It is presumably very difficult to have significant cosmological effects due to a coupling to baryons
only. However, uncoupled baryons can still play a role in the presence of a coupling to dark matter
(see Section 1.6 on nonlinear aspects).

1.4.4.2 Dark energy and dark matter

An interaction between dark energy and dark matter (CDM) is active when CDM mass is a
function of the dark-energy scalar field: m. = m.(¢). In this case the coupling is not affected
by tests on the equivalence principle and solar-system constraints and can therefore be stronger
than the one with baryons. One may argue that dark-matter particles are themselves coupled to
baryons, which leads, through quantum corrections, to direct coupling between dark energy and
baryons. The strength of such couplings can still be small and was discussed in [304] for the case of
neutrino—dark-energy couplings. Also, quantum corrections are often recalled to spoil the flatness
of a quintessence potential. However, it may be misleading to calculate quantum corrections up to
a cutoff scale, as contributions above the cutoff can possibly compensate terms below the cutoff,
as discussed in [958].
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Typical values of § presently allowed by observations (within current CMB data) are within
the range 0 < 8 < 0.06 (at 95% CL for a constant coupling and an exponential potential) [114, 47,
35, 44], or possibly more [539, 531] if neutrinos are taken into account or for more realistic time-
dependent choices of the coupling. This framework is generally referred to as ‘coupled quintessence’
(CQ). Various choices of couplings have been investigated in literature, including constant and
varying B(¢) [33, 619, 35, 518, 414, 747, 748, 724, 377).

The presence of a coupling (and therefore, of a fifth force acting among dark-matter particles)
modifies the background expansion and linear perturbations [34, 33, 35], therefore affecting CMB
and cross-correlation of CMB and LSS [44, 35, 47, 45, 114, 539, 531, 970, 612, 42].

Furthermore, structure formation itself is modified [604, 618, 518, 611, 870, 3, 666, 129, 962,
79, 76, 77, 80, 565, 562, 75, 980, 640].

An alternative approach, also investigated in the literature [619, 916, 915, 613, 387, 388, 193,
794, 192], where the authors consider as a starting point Eq. (1.4.21): the coupling is then intro-
duced by choosing directly a covariant stress-energy tensor on the RHS of the equation, treating
dark energy as a fluid and in the absence of a starting action. The advantage of this approach
is that a good parameterization allows us to investigate several models of dark energy at the
same time. Problems connected to instabilities of some parameterizations or to the definition of a
physically-motivated speed of sound for the density fluctuations can be found in [916]. Tt is also
possible to both take a covariant form for the coupling and a quintessence dark-energy scalar field,
starting again directly from Eq. (1.4.21). This has been done, e.g., in [145], [144]. At the back-
ground level only, [235], [237], [302] and [695] have also considered which background constraints
can be obtained when starting from a fixed present ratio of dark energy and dark matter. The
disadvantage of this approach is that it is not clear how to perturb a coupling that has been defined
as a background quantity.

A Yukawa-like interaction was investigated [357, 279], pointing out that coupled dark energy
behaves as a fluid with an effective equation of state w < —1, though staying well defined and
without the presence of ghosts [279].

For an illustration of observable effects related to dark-energy—dark-matter interaction see also
Section (2.11) of this report.

1.4.4.3 Dark energy and neutrinos

A coupling between dark energy and neutrinos can be even stronger than the one with dark matter
and as compared to gravitational strength. Typical values of 8 are order 50100 or even more,
such that even the small fraction of cosmic energy density in neutrinos can have a substantial
influence on the time evolution of the quintessence field. In this scenario neutrino masses change
in time, depending on the value of the dark-energy scalar field ¢. Such a coupling has been
investigated within MaVaNs [356, 714, 135, 12, 952, 280, 874, 856, 139, 178, 177] and more recently
within growing neutrino cosmologies [36, 957, 668, 963, 962, 727, 179, 78]. In this latter case, DE
properties are related to the neutrino mass and to a cosmological event, i.e., neutrinos becoming
non-relativistic. This leads to the formation of stable neutrino lumps [668, 963, 78] at very large
scales only (~ 100 Mpc and beyond) as well as to signatures in the CMB spectra [727]. For an
illustration of observable effects related to this case see Section (2.9) of this report.

1.4.4.4 Scalar-tensor theories

Scalar-tensor theories [954, 471, 472, 276, 216, 217, 955, 912, 722, 354, 146, 764, 721, 797, 646, 725,
726, 205, 54] extend GR by introducing a non-minimal coupling between a scalar field (acting also
as dark energy) and the metric tensor (gravity); they are also sometimes referred to as ‘extended
quintessence’. We include scalar-tensor theories among ‘interacting cosmologies’ because, via a
Weyl transformation, they are equivalent to a GR framework (minimal coupling to gravity) in which
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the dark-energy scalar field ¢ is coupled (universally) to all species [954, 608, 936, 351, 724, 219]. In
other words, these theories correspond to the case where, in action (1.4.20), the mass of all species
(baryons, dark matter, ...) is a function m = m(¢) with the same coupling for every species
a. Indeed, a description of the coupling via an action such as (1.4.20) is originally motivated by
extensions of GR such as scalar-tensor theories. Typically the strength of the scalar-mediated
interaction is required to be orders of magnitude weaker than gravity ([553], [725] and references
therein for recent constraints). It is possible to tune this coupling to be as small as is required
— for example by choosing a suitably flat potential V' (¢) for the scalar field. However, this leads
back to naturalness and fine-tuning problems.

In Sections 1.4.6 and 1.4.7 we will discuss in more detail a number of ways in which new scalar
degrees of freedom can naturally couple to standard model fields, while still being in agreement
with observations. We mention here only that the presence of chameleon mechanisms [171, 672,
670, 172, 464, 173, 282] can, for example, modify the coupling depending on the environment. In
this way, a small (screened) coupling in high-density regions, in agreement with observations, is
still compatible with a bigger coupling (8 ~ 1) active in low density regions. In other words, a
dynamical mechanism ensures that the effects of the coupling are screened in laboratory and solar
system tests of gravity.

Typical effects of scalar-tensor theories on CMB and structure formation include:

e enhanced ISW [725, 391, 980];

e violation of the equivalence principle: extended objects such as galaxies do not all fall at the
same rate [45, 464].

However, it is important to remark that screening mechanisms are meant to protect the scalar
field in high-density regions (and therefore allow for bigger couplings in low density environments)
but they do not address problems related to self-acceleration of the DE scalar field, which still
usually require some fine-tuning to match present observations on w. f(R) theories, which can be
mapped into a subclass of scalar-tensor theories, will be discussed in more detail in Section 1.4.6.

1.4.5 Phantom crossing

In this section we pay attention to the evolution of the perturbations of a general dark-energy fluid
with an evolving equation of state parameter w. Current limits on the equation of state parameter
w = p/p of the dark energy indicate that p &~ —p, and so do not exclude p < —p, a region of
parameter space often called phantom energy. Even though the region for which w < —1 may be
unphysical at the quantum level, it is still important to probe it, not least to test for coupled dark
energy and alternative theories of gravity or higher dimensional models that can give rise to an
effective or apparent phantom energy.

Although there is no problem in considering w < —1 for the background evolution, there are
apparent divergences appearing in the perturbations when a model tries to cross the limit w = —1.
This is a potential headache for experiments like Euclid that directly probe the perturbations
through measurements of the galaxy clustering and weak lensing. To analyze the Euclid data,
we need to be able to consider models that cross the phantom divide w = —1 at the level of
first-order perturbations (since the only dark-energy model that has no perturbations at all is the
cosmological constant).

However, at the level of cosmological first-order perturbation theory, there is no fundamental
limitation that prevents an effective fluid from crossing the phantom divide.

As w — —1 the terms in Egs. (1.3.17) and (1.3.18) containing 1/(1 + w) will generally diverge.
This can be avoided by replacing 6 with a new variable V' defined via V' = p(1+w)6. This
corresponds to rewriting the 0-i component of the energy momentum tensor as ik;Tg = V, which
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avoids problems if Tg # 0 when p = —p. Replacing the time derivatives by a derivative with
respect to the logarithm of the scale factor Ina (denoted by a prime), we obtain [599, 450, 536]:

Vv )
! r_ e
§ =301+ w)® -3 < 5 w§> (1.4.28)
k2 6p k2
I _ —
Vi=—-(1-3w)V+ - + (1 +w) a(\If ) . (1.4.29)

In order to solve Egs. (1.4.28) and (1.4.29) we still need to specify the expressions for dp and ,
quantities that characterize the physical, intrinsic nature of the dark-energy fluid at first order in
perturbation theory. While in general the anisotropic stress plays an important role as it gives
a measure of how the gravitational potentials ® and ¥ differ, we will set it in this section to
zero, m = 0. Therefore, we will focus on the form of the pressure perturbation. There are two
important special cases: barotropic fluids, which have no internal degrees of freedom and for which
the pressure perturbation is fixed by the evolution of the average pressure, and non-adiabatic fluids
like, e.g., scalar fields for which internal degrees of freedom can change the pressure perturbation.

1.4.5.1 Parameterizing the pressure perturbation

Barotropic fluids. We define a fluid to be barotropic if the pressure p depends strictly only on
the energy density p: p = p(p). These fluids have only adiabatic perturbations, so that they are
often called adiabatic. We can write their pressure as

p(p) =p(p+dp) = p(p) + j—i Op+0[(6p)°] . (1.4.30)

Here p(p) = p is the pressure of the isotropic and homogeneous part of the fluid. The second term
in the expansion (1.4.30) can be re-written as

dp| _p_ W _
dpl, » 3aH(1+w)  °

, (1.4.31)

where we used the equation of state and the conservation equation for the dark-energy density in
the background. We notice that the adiabatic sound speed ¢ will necessarily diverge for any fluid
where w crosses —1.

However, for a perfect barotropic fluid the adiabatic sound speed ¢ turns out to be the physical
propagation speed of perturbations. Therefore, it should never be larger than the speed of light
— otherwise our theory becomes acausal — and it should never be negative (c2 < 0) — otherwise
classical, and possible quantum, instabilities appear. Even worse, the pressure perturbation

w
Sp=cip=(w— -———— |6 1.4.32
p=ctip= (v gt ) o (14.32)
will necessarily diverge if w crosses —1 and dp # 0. Even if we find a way to stabilize the pressure
perturbation, for instance an equation of state parameter that crosses the —1 limit with zero slope
(w), there will always be the problem of a negative speed of sound that prevents these models from
being viable dark-energy candidates.

Non-adiabatic fluids. To construct a model that can cross the phantom divide, we therefore
need to violate the constraint that p is a unique function of p. At the level of first-order perturbation
theory, this amounts to changing the prescription for dp, which now becomes an arbitrary function
of k and t. One way out of this problem is to choose an appropriate gauge where the equations
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are simple; one choice is, for instance, the rest frame of the fluid where the pressure perturbation
reads (in this frame)
op = é2op, (1.4.33)

where now the é2 is the speed with which fluctuations in the fluid propagate, i.e., the sound speed.
We can write Eq. (1.4.33), with an appropriate gauge transformation, in a form suitable for the
Newtonian frame, i.e., for Egs. (1.4.28) and (1.4.29). We find that the pressure perturbation is
given by [347, 112, 214]

5p = ¢26p + 3aH (a) (62 — c2) (1.4.34)

%
pﬁ.
The problem here is the presence of ¢2, which goes to infinity at the crossing and it is impossible
that this term stays finite except if V' — 0 fast enough or w = 0, but this is not, in general, the
case.

This divergence appears because for w = —1 the energy momentum tensor Eq. (1.3.3) reads:
THY = pg"”. Normally the four-velocity u* is the time-like eigenvector of the energy-momentum
tensor, but now all vectors are eigenvectors. So the problem of fixing a unique rest-frame is no
longer well posed. Then, even though the pressure perturbation looks fine for the observer in the
rest-frame, because it does not diverge, the badly-defined gauge transformation to the Newtonian
frame does, as it also contains c2

a*

1.4.5.2 Regularizing the divergences

We have seen that neither barotropic fluids nor canonical scalar fields, for which the pressure
perturbation is of the type (1.4.34), can cross the phantom divide. However, there is a simple
model [called the quintom model 360, 451] consisting of two fluids of the same type as in the
previous Section 1.4.5.1 but with a constant w on either side of w = —1. The combination of the
two fluids then effectively crosses the phantom divide if we start with wioy > —1, as the energy
density in the fluid with w < —1 will grow faster, so that this fluid will eventually dominate and
we will end up with wies < —1.

The perturbations in this scenario were analyzed in detail in [536], where it was shown that in
addition to the rest-frame contribution, one also has relative and non-adiabatic perturbations.
All these contributions apparently diverge at the crossing, but their sum stays finite. When
parameterizing the perturbations in the Newtonian gauge as

op(k,t) = ~(k,t) dp(k,t) (1.4.35)

the quantity v will, in general, have a complicated time and scale dependence. The conclusion of
the analysis is that indeed single canonical scalar fields with pressure perturbations of the type
(1.4.34) in the Newtonian frame cannot cross w = —1, but that this is not the most general case.
More general models have a priori no problem crossing the phantom divide, at least not with the
classical stability of the perturbations.

Kunz and Sapone [536] found that a good approximation to the quintom model behavior can
be found by regularizing the adiabatic sound speed in the gauge transformation with

9 w(l+ w)
— oy — 1.4.36
o =10 3Ha[(14 w)? + A ( )
where )\ is a tunable parameter which determines how close to w = —1 the regularization kicks in.

A value of A ~ 1/1000 should work reasonably well. However, the final results are not too sensitive
on the detailed regularization prescription.

This result appears also related to the behavior found for coupled dark-energy models (originally
introduced to solve the coincidence problem) where dark matter and dark energy interact not only
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through gravity [33]. The effective dark energy in these models can also cross the phantom divide
without divergences [462, 279, 534].
The idea is to insert (by hand) a term in the continuity equations of the two fluids

pm +3Hpy = A (1.4.37)
Pz +3H (1 4+ wy) pe = =, (1.4.38)

where the subscripts m, = refer to dark matter and dark energy, respectively. In this approximation,
the adiabatic sound speed c2 reads

2 Pz, Yo (1.4.39)

C xr ’
DT by 3aH (1 +wy) + A ps

which stays finite at crossing as long as A # 0.
However in this class of models there are other instabilities arising at the perturbation level
regardless of the coupling used, [cf. 916].

1.4.5.3 A word on perturbations when w = —1

Although a cosmological constant has w = —1 and no perturbations, the converse is not automat-
ically true: w = —1 does not necessarily imply that there are no perturbations. It is only when we
set from the beginning (in the calculation):

p=-—p (1.4.40)
op=—bp (1.4.41)
T=0, (1.4.42)

ie., TH o g, that we have as a solution 6 =V = 0.

For instance, if we set w = —1 and dp = ydp (where v can be a generic function) in Egs. (1.4.28)
and (1.4.29) we have 6 # 0 and V # 0. However, the solutions are decaying modes due to the
—% (1 —3w)V term so they are not important at late times; but it is interesting to notice that
they are in general not zero.

As another example, if we have a non-zero anisotropic stress 7 then the Eqgs. (1.4.28) —(1.4.29)
will have a source term that will influence the growth of § and V' in the same way as ¥ does (just
because they appear in the same way). The (1 + w) term in front of 7 should not worry us as we
can always define the anisotropic stress through

PPN 1 .

where Hij # 0 when i # j is the real traceless part of the energy momentum tensor, probably the
quantity we need to look at: as in the case of V = (1 4+ w)#, there is no need for II (1 + w)7 to
vanish when w = —1.

It is also interesting to notice that when w = —1 the perturbation equations tell us that dark-
energy perturbations are not influenced through ¥ and ®’ (see Eq. (1.4.28) and (1.4.29)). Since
® and ¥ are the quantities directly entering the metric, they must remain finite, and even much
smaller than 1 for perturbation theory to hold. Since, in the absence of direct couplings, the dark
energy only feels the other constituents through the terms (1 + w)¥ and (1 + w)®’, it decouples
completely in the limit w = —1 and just evolves on its own. But its perturbations still enter
the Poisson equation and so the dark matter perturbation will feel the effects of the dark-energy
perturbations.
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Although this situation may seem contrived, it might be that the acceleration of the universe
is just an observed effect as a consequence of a modified theory of gravity. As was shown in [537],
any modified gravity theory can be described as an effective fluid both at background and at
perturbation level; in such a situation it is imperative to describe its perturbations properly as this
effective fluid may manifest unexpected behavior.

1.4.6 f(R) gravity

In parallel to models with extra degrees of freedom in the matter sector, such as interacting
quintessence (and k-essence, not treated here), another promising approach to the late-time accel-
eration enigma is to modify the left-hand side of the Einstein equations and invoke new degrees
of freedom, belonging this time to the gravitational sector itself. One of the simplest and most
popular extensions of GR and a known example of modified gravity models is the f(R) gravity in
which the 4-dimensional action is given by some generic function f(R) of the Ricci scalar R (for
an introduction see, e.g., [49]):

S = 5x3 [ AR + Sl Vo), (1449

where as usual k2 = 871G, and S,, is a matter action with matter fields ¥,,. Here G is a bare
gravitational constant: we will see that the observed value will in general be different. As mentioned
in the previously, it is possible to show that f(R) theories can be mapped into a subset of scalar-
tensor theories and, therefore, to a class of interacting scalar field dark-energy models universally
coupled to all species. When seen in the Einstein frame [954, 608, 936, 351, 724, 219], action (1.4.44)
can, therefore, be related to the action (1.4.20) shown previously. Here we describe f(R) in the
Jordan frame: the matter fields in S, obey standard conservation equations and, therefore, the
metric g, corresponds to the physical frame (which here is the Jordan frame).
There are two approaches to deriving field equations from the action (1.4.44).

e (I) The metric formalism

The first approach is the metric formalism in which the connections '3, are the usual
connections defined in terms of the metric g,,. The field equations can be obtained by
varying the action (1.4.44) with respect to g,

1
f(R)guw — VuVuF(R) + gwOF (R) = K*T),, (1.4.45)

FR)Ru(g) — 5

where F(R) = 0f/OR (we also use the notation f g = df/0R, frr = 0?f/0R?), and T, is
the matter energy-momentum tensor. The trace of Eq. (1.4.45) is given by

30F(R) + F(R)R — 2f(R) = r*T, (1.4.46)

where T' = ¢"*T},,, = —p+ 3P. Here p and P are the energy density and the pressure of the
matter, respectively.

e (II) The Palatini formalism

The second approach is the Palatini formalism, where I'y and g,,,, are treated as independent
variables. Varying the action (1.4.44) with respect to g, gives

F(R)R,,,(T') — %f (R) g = KTy (1.4.47)
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where R, (I') is the Ricci tensor corresponding to the connections I'j.. In general this is
different from the Ricci tensor Ry, (g) corresponding to the metric connections. Taking the
trace of Eq. (1.4.47), we obtain

F(R)R —2f(R) = k*T, (1.4.48)

where R(T') = g""R,,,,(T") is directly related to T'. Taking the variation of the action (1.4.44)
with respect to the connection, and using Eq. (1.4.47), we find

1 k?T,, FR(T)-f 1
Ry (9) = 59 R(g) = F’ — 5 9w+ 7 (VuVoF — g, 0F)
3 1 )

In GR we have f(R) = R—2A and F(R) = 1, so that the term OF(R) in Eq. (1.4.46) vanishes. In
this case both the metric and the Palatini formalisms give the relation R = —x*T = k?(p — 3P),
which means that the Ricci scalar R is directly determined by the matter (the trace T).

In modified gravity models where F(R) is a function of R, the term OF(R) does not vanish
in Eq. (1.4.46). This means that, in the metric formalism, there is a propagating scalar degree of
freedom, ¢ = F(R). The trace equation (1.4.46) governs the dynamics of the scalar field ¢ — dubbed
“scalaron” [862]. In the Palatini formalism the kinetic term OF(R) is not present in Eq. (1.4.48),
which means that the scalar-field degree of freedom does not propagate freely [32, 563, 567, 566].

The de Sitter point corresponds to a vacuum solution at which the Ricci scalar is constant.
Since OF(R) = 0 at this point, we get

F(R)R —2f(R) =0, (1.4.50)

which holds for both the metric and the Palatini formalisms. Since the model f(R) = aR? satisfies
this condition, it possesses an exact de Sitter solution [862].

It is important to realize that the dynamics of f(R) dark-energy models is different depending
on the two formalisms. Here we confine ourselves to the metric case only.

Already in the early 1980s it was known that the model f(R) = R+ aR? can be responsible for
inflation in the early universe [862]. This comes from the fact that the presence of the quadratic
term aR? gives rise to an asymptotically exact de Sitter solution. Inflation ends when the term
aR? becomes smaller than the linear term R. Since the term aR? is negligibly small relative to R
at the present epoch, this model is not suitable to realizing the present cosmic acceleration.

Since a late-time acceleration requires modification for small R, models of the type f(R) =
R — a/R" (a > 0,n > 0) were proposed as a candidate for dark energy [204, 212, 687]. While
the late-time cosmic acceleration is possible in these models, it has become clear that they do not
satisfy local gravity constraints because of the instability associated with negative values of f rr
[230, 319, 852, 697, 355]. Moreover a standard matter epoch is not present because of a large
coupling between the Ricci scalar and the non-relativistic matter [43].

Then, we can ask what are the conditions for the viability of f(R) dark-energy models in the
metric formalism. In the following we first present such conditions and then explain step by step
why they are required.

e (i) fr>0for R > Ry (> 0), where Ry is the Ricci scalar at the present epoch. Strictly
speaking, if the final attractor is a de Sitter point with the Ricci scalar Ry (> 0), then the
condition f r > 0 needs to hold for R > R;.

This is required to avoid a negative effective gravitational constant.
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. (11) f,RR > 0 for R > Ry.

This is required for consistency with local gravity tests [319, 697, 355, 683], for the presence
of the matter-dominated epoch [43, 39], and for the stability of cosmological perturbations
[213, 849, 110, 358].

e (iii) f(R) — R — 2A for R > Ry.

This is required for consistency with local gravity tests [48, 456, 864, 53, 904] and for the
presence of the matter-dominated epoch [39].

o (iv) 0< BLEE(r = —9) < lat r =108 = 9

This is required for the stability of the late-time de Sitter point [678, 39].

For example, the model f(R) = R —«a/R" (a >0, n > 0) does not satisfy the condition (ii).
Below we list some viable f(R) models that satisfy the above conditions.

(A) f(R) = R— uR(R/R.)”  with 0<p<1, p,R.>0, (1.4.51)
_ (R/R:)*" .

(B) f(R)=R - MRCW with n,pu, R. >0, (1.4.52)

(C) f(R) = R — uR. [1 —(+ RQ/Rg)*"} with n, 1, Re > 0, (1.4.53)

(D) f(R) = R — puR.tanh (R/R.)  with u,Re > 0. (1.4.54)

The models (A), (B), (C), and (D) have been proposed in [39], [456], [864], and [904], respectively.
A model similar to (D) has been also proposed in [53], while a generalized model encompassing
(B) and (C) has been studied in [660]. In model (A), the power p needs to be close to 0 to
satisfy the condition (iii). In models (B) and (C) the function f(R) asymptotically behaves as
f(R) - R — pR.[1 — (R?/R?)~™] for R > R, and hence the condition (iii) can be satisfied even
for n = O(1). In model (D) the function f(R) rapidly approaches f(R) — R — pR. in the region
R > R.. These models satisfy f(R = 0) = 0, so the cosmological constant vanishes in the flat
spacetime.

Let us consider the cosmological dynamics of f(R) gravity in the metric formalism. It is possible
to carry out a general analysis without specifying the form of f(R). In the flat FLRW spacetime
the Ricci scalar is given by

R=6(2H? + H), (1.4.55)

where H is the Hubble parameter. As a matter action .S,, we take into account non-relativistic
matter and radiation, which satisfy the usual conservation equations p,, + 3Hp,, = 0 and p, +
4H p, = 0 respectively. From Egs. (1.4.45) and (1.4.46) we obtain the following equations

3FH? =k (pm + pr) + (FR— f)/2 — 3HF, (1.4.56)
—2FH = k*[pm + (4/3)p,) + F — HF . (1.4.57)

We introduce the dimensionless variables:

F f R K2 Py
-~ HF = T6FH? = = 1.4.
T Oor 3 xIo 6EFH2 , X3 CH2 , T4 S , ( 58)
together with the following quantities
"™ 3FH? 1 =22 = &3~ T4, r =24, DE =T1 + T2 + 3. 4.
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Tt is straightforward to derive the following differential equations [39]:

o= —1—x3— 30+ 2?7 — 2123+ 24, (1.4.60)

xh = R xo(2z3 —4 — x1), (1.4.61)
m

xh = _nTs 2z3(x3 — 2), (1.4.62)

Ty = —2w314 + 1174, (1.4.63)

where the prime denotes d/dIna and

dIn F RfRR
= = : 1.4.64
"=dmR " fr (1.4.64)
dlnf RfR T3
= — = —— = 1.4.
dln R f To (1.4.65)

From Eq. (1.4.65) one can express R as a function of x3/x5. Since m is a function of R, it follows
that m is a function of r, i.e., m = m(r). The ACDM model, f(R) = R—2A, corresponds to m = 0.
Hence the quantity m characterizes the deviation from the ACDM model. Note also that the model,
f(R) = aRY™ — 2A, gives a constant value of m. The analysis using Eqgs. (1.4.60)— (1.4.63) is
sufficiently general in the sense that the form of f(R) does not need to be specified.

The effective equation of state of the system (i.e., ptot/ptot) 1S

1
wer = —5 (223~ 1). (1.4.66)

The dynamics of the full system can be investigated by analyzing the stability properties of
the critical phase-space points as in, e.g., [39]. The general conclusions is that only models with
a characteristic function m(r) positive and close to ACDM, i.e., m > 0, are cosmologically viable.
That is, only for these models one finds a sequence of a long decelerated matter epoch followed by
a stable accelerated attractor.

The perturbation equations have been derived in, e.g., [473, 907]. Neglecting the contribution
of radiation one has

1
5;; + (1’3 — 2CE1> 6;n — ;(1 — X1 — X2 — Zg)ém
1
2

k2 ~
Hlj — 6+ 32?7 — 32 — 3x1 (x5 — 1)}5F
5

+3(—2z + 23 — 1)0F + 3515”} , (1.4.67)

SE" + (1 —2x1 + 1‘3)5FI

k2 2£C3
+ |:x§—2$3+m —1'1(.%3+1)—1'/1+1L'?:| OF
= (1 — X1 — T2 71’3)5m 79515;, (1468)

where §F = §F/F, and the new variable x5 = aH satisfies
zs = (x3 — 1) z5. (1.4.69)

The perturbation 0F can be written as 6/ = frrdoR and, therefore, OF = moR/R. These
equations can be integrated numerically to derive the behavior of §,, at all scales. However, at
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sub-Hubble scales they can be simplified and the following expression for the two MG functions
Q,n of Eq. (1.3.23) can be obtained:

k2
Q=1- 55
3(a2M? + k2)
2k>
=l s e (14.70)
where 1
M? = ) 1.4.71
3f RR ( )

Note that in the ACDM limit f grr — 0 and @, — 1.

These relations can be straightforwardly generalized. In [287] the perturbation equations for the
f(R) Lagrangian have been extended to include coupled scalar fields and their kinetic energy X =
—¢ 9" /2, resulting in a f(R, ¢, X)-theory. In the slightly simplified case in which f(R, ¢, X) =
f1(R, @) + fa(¢, X), with arbitrary functions f1, 2, one obtains

1 (14 2r)(fx +2r2) +2F2 /F

F(1+ 37’1)(f’x +2r9) + 3F72q5/F ’

_ (L42r)(fix +2r2) +2F3/F (1.4.72)
T (Fx +2m) +AFJF h

where the notation f x or F 4 denote differentiation wrt X or ¢, respectively, and where r; = ’;—z%

and ro = Z—;Mi , My = —f 44/2 being the scalar field effective mass. In the same paper [287] an
extra term proportional to X[J¢ in the Lagrangian is also taken into account.
Euclid forecasts for the f(R) models will be presented in Section 1.8.7.

1.4.7 Massive gravity and higher-dimensional models

Instead of introducing new scalar degrees of freedom such as in f(R) theories, another philosophy
in modifying gravity is to modify the graviton itself. In this case the new degrees of freedom
belong to the gravitational sector itself; examples include massive gravity and higher-dimensional
frameworks, such as the Dvali-Gabadadze—Porrati (DGP) model [326] and its extensions. The new
degrees of freedom can be responsible for a late-time speed-up of the universe, as is summarized
below for a choice of selected models. We note here that while such self-accelerating solutions
are interesting in their own right, they do not tackle the old cosmological constant problem: why
the observed cosmological constant is so much smaller than expected in the first place. Instead of
answering this question directly, an alternative approach is the idea of degravitation [see 327, 328,
58, 330], where the cosmological constant could be as large as expected from standard field theory,
but would simply gravitate very little (see the paragraph in Section 1.4.7.1 below).

1.4.7.1 Self-acceleration

DGP. The DGP model is one of the important infrared (IR) modified theories of gravity. From
a four-dimensional point of view this corresponds effectively to a theory in which the graviton
acquires a soft mass m. In this braneworld model our visible universe is confined to a brane of four
dimensions embedded into a five-dimensional bulk. At small distances, the four-dimensional gravity
is recovered due to an intrinsic Einstein-Hilbert term sourced by the brane curvature causing a
gravitational force law that scales as 7—2. At large scales the gravitational force law asymptotes to
an 3 behavior. The cross over scale 7. = m ™! is given by the ratio of the Planck masses in four
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(My) and five (M5) dimensions. One can study perturbations around flat spacetime and compute
the gravitational exchange amplitude between two conserved sources, which does not reduce to
the GR result even in the limit m— 0. However, the successful implementation of the Vainshtein
mechanism for decoupling the additional modes from gravitational dynamics at sub-cosmological
scales makes these theories still very attractive [913]. Hereby, the Vainshtein effect is realized
through the nonlinear interactions of the helicity-0 mode 7, as will be explained in further detail
below. Thus, this vDVZ discontinuity does not appear close to an astrophysical source where the
7 field becomes nonlinear and these nonlinear effects of 7 restore predictions to those of GR. This
is most easily understood in the limit where My, Ms; — oo and m — 0 while keeping the strong
coupling scale A = (Mym?)'/? fixed. This allows us to treat the usual helicity-2 mode of gravity
linearly while treating the helicity-0 mode 7 nonlinearly. The resulting effective action is then

1

L. =3r0r — e

(Om)?Orr, (1.4.73)
where interactions already become important at the scale A < Mp [593].

Furthermore, in this model, one can recover an interesting range of cosmologies, in particular
a modified Friedmann equation with a self-accelerating solution. The Einstein equations thus
obtained reduce to the following modified Friedmann equation in a homogeneous and isotropic
metric [298]

H?> +mH = %p, (1.4.74)
such that at higher energies one recovers the usual four-dimensional behavior, H? ~ p, while at
later time corrections from the extra dimensions kick in. As is clear in this Friedmann equation,
this braneworld scenario holds two branches of cosmological solutions with distinct properties.
The self-accelerating branch (minus sign) allows for a de Sitter behavior H = const = m even in
the absence of any cosmological constant py = 0 and as such it has attracted a lot of attention.
Unfortunately, this branch suffers from a ghost-like instability. The normal branch (the plus sign)
instead slows the expansion rate but is stable. In this case a cosmological constant is still required
for late-time acceleration, but it provides significant intuition for the study of degravitation.

The Galileon. Even though the DGP model is interesting for several reasons like giving the
Vainshtein effect a chance to work, the self-acceleration solution unfortunately introduces extra
ghost states as outlined above. However, it has been generalized to a “Galileon” model, which can
be considered as an effective field theory for the helicity-0 field 7. Galileon models are invariant
under shifts of the field 7 and shifts of the gradients of © (known as the Galileon symmetry),
meaning that a Galileon model is invariant under the transformation

T =T +c+vat, (1.4.75)

for arbitrary constant ¢ and v,. In induced gravity braneworld models, this symmetry is naturally
inherited from the five-dimensional Poincaré invariance [295]. The Galileon theory relies strongly
on this symmetry to constrain the possible structure of the effective 7 Lagrangian, and insisting
that the effective field theory for = bears no ghost-like instabilities further restricts the possibilities
[686]. It can be shown that there exist only five derivative interactions, which preserve the Galilean

symmetry without introducing ghosts. These interactions are symbolically of the form ﬁ&” =7
and £ = (0m)2(007)" 2, for n = 2,...5. A general Galileon Lagrangian can be constructed as a
linear combination of these Lagrangian operators. The effective action for the DGP scalar (1.4.73)
can be seen to be a combination of ESTQ) and ESE'). Such interactions have been shown to naturally
arise from Lovelock invariants in the bulk of generalized braneworld models [295]. However, the
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Galileon does not necessarily require a higher-dimensional origin and can be consistently treated
as a four-dimensional effective field theory.

As shown in [686], such theories can allow for self-accelerating de Sitter solutions without any
ghosts, unlike in the DGP model. In the presence of compact sources, these solutions can support
spherically-symmetric, Vainshtein-like nonlinear perturbations that are also stable against small
fluctuations. However, this is constrained to the subset of the third-order Galileon, which contains
only £, £2 and £ [669].

The Galileon terms described above form a subset of the “generalized Galileons”. A generalized
Galileon model allows nonlinear derivative interactions of the scalar field 7 in the Lagrangian while
insisting that the equations of motion remain at most second order in derivatives, thus removing
any ghost-like instabilities. However, unlike the pure Galileon models, generalized Galileons do not
impose the symmetry of Eq. (1.4.75). These theories were first written down by Horndeski [445] and
later rediscoved by Deffayet et al. [300]. They are a linear combination of Lagrangians constructed

by multiplying the Galileon Lagrangians EST") by an arbitrary scalar function of the scalar 7= and
its first derivatives. Just like the Galileon, generalized Galileons can give rise to cosmological
acceleration and to Vainshtein screening. However, as they lack the Galileon symmetry these
theories are not protected from quantum corrections. Many other theories can also be found
within the spectrum of generalized Galileon models, including k-essence.

Degravitation. The idea behind degravitation is to modify gravity in the IR, such that the
vacuum energy could have a weaker effect on the geometry, and therefore reconcile a natural value
for the vacuum energy as expected from particle physics with the observed late-time acceleration.
Such modifications of gravity typically arise in models of massive gravity [327, 328, 58, 330], i.e.,
where gravity is mediated by a massive spin-2 field. The extra-dimensional DGP scenario presented
previously, represents a specific model of soft mass gravity, where gravity weakens down at large
distance, with a force law going as 1/r. Nevertheless, this weakening is too weak to achieve
degravitation and tackle the cosmological constant problem. However, an obvious way out is to
extend the DGP model to higher dimensions, thereby diluting gravity more efficiently at large
distances. This is achieved in models of cascading gravity, as is presented below. An alternative to
cascading gravity is to work directly with theories of constant mass gravity (hard mass graviton).

Cascading gravity. Cascading gravity is an explicit realization of the idea of degravitation,
where gravity behaves as a high-pass filter, allowing sources with characteristic wavelength (in space
and in time) shorter than a characteristic scale r. to behave as expected from GR, but weakening
the effect of sources with longer wavelengths. This could explain why a large cosmological constant
does not backreact as much as anticipated from standard GR. Since the DGP model does not modify
gravity enough in the IR, “cascading gravity” relies on the presence of at least two infinite extra
dimensions, while our world is confined on a four-dimensional brane [293]. Similarly as in DGP,
four-dimensional gravity is recovered at short distances thanks to an induced Einstein—Hilbert
term on the brane with associated Planck scale M,. The brane we live in is then embedded in
a five-dimensional brane, which bears a five-dimensional Planck scale M5, itself embedded in six
dimensions (with Planck scale Mg). From a four-dimensional perspective, the relevant scales are
the 5d and 6d masses my = M3/MZ and ms = Mg /M3, which characterize the transition from
the 4d to 5d and 5d to 6d behavior respectively.

Such theories embedded in more-than-one extra dimensions involve at least one additional
scalar field that typically enters as a ghost. This ghost is independent of the ghost present in
the self-accelerating branch of DGP but is completely generic to any codimension-two and higher
framework with brane localized kinetic terms. However, there are two ways to cure the ghost, both
of which are natural when considering a realistic higher codimensional scenario, namely smoothing
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out the brane, or including a brane tension [293, 290, 294].

When properly taking into account the issue associated with the ghost, such models give rise to
a theory of massive gravity (soft mass graviton) composed of one helicity-2 mode, helicity-1 modes
that decouple and 2 helicity-0 modes. In order for this theory to be consistent with standard
GR in four dimensions, both helicity-0 modes should decouple from the theory. As in DGP, this
decoupling does not happen in a trivial way, and relies on a phenomenon of strong coupling. Close
enough to any source, both scalar modes are strongly coupled and therefore freeze.

The resulting theory appears as a theory of a massless spin-2 field in four-dimensions, in other
words as GR. If r < m5 and for mg < ms, the respective Vainshtein scale or strong coupling scale,
i.e., the distance from the source M within which each mode is strongly coupled is r3 = M/mZMZ,
where ¢ = 5,6. Around a source M, one recovers four-dimensional gravity for r < r5, five-
dimensional gravity for r5 < r < rg and finally six-dimensional gravity at larger distances r > r¢.

Massive gravity. While laboratory experiments, solar systems tests and cosmological observa-
tions have all been in complete agreement with GR for almost a century now, these bounds do
not eliminate the possibility for the graviton to bear a small hard mass m < 6.10732 eV [400].
The question of whether or not gravity could be mediated by a hard-mass graviton is not only a
purely fundamental but an abstract one. Since the degravitation mechanism is also expected to
be present if the graviton bears a hard mass, such models can play an important role for late-time
cosmology, and more precisely when the age of the universe becomes on the order of the graviton
Compton wavelength.

Recent progress has shown that theories of hard massive gravity can be free of any ghost-like
pathologies in the decoupling limit where Mp; — oo and m — 0 keeping the scale A3 = Mpim? fixed
[291, 292]. The absence of pathologies in the decoupling limit does not guarantee the stability of
massive gravity on cosmological backgrounds, but provides at least a good framework to understand
the implications of a small graviton mass. Unlike a massless spin-2 field, which only bears two
polarizations, a massive one bears five of them, namely two helicity-2 modes, two helicity-1 modes
which decouple, and one helicity-0 mode (denoted as 7). As in the braneworld models presented
previously, this helicity-0 mode behaves as a scalar field with specific derivative interactions of the

form
1

1 .
L. = h* <Xf}) + FX/S?) + Aﬁxﬁ‘i)) . (1.4.76)
3 3
Here, h,,,, denotes the canonically-normalized (rescaled by My;) tensor field perturbation (helicity-
2 mode), while X /,(L}/)7X ﬁ), and X ,(jj’,) are respectively, linear, quadratic and cubic in the helicity-
0 mode 7. Importantly, they are all transverse (for instance, Xﬁ,) x n,0r — 0,0,m). Not
only do these interactions automatically satisfy the Bianchi identity, as they should to preserve
diffeomorphism invariance, but they are also at most second order in time derivatives. Hence, the
interactions (1.4.76) are linear in the helicity-2 mode, and are free of any ghost-like pathologies.
Therefore, such interactions are very similar in spirit to the Galileon ones, and bear the same
internal symmetry (1.4.75), and present very similar physical properties. When X P(ff,) is absent, one
can indeed recover an Einstein frame picture for which the interactions are of the form
Mg, 3 36 2 § 2 2 2
L=="/=gR+ —aln + - (07)’0Or + -5 (07)° ((0.0sm)* — (Om)?)
2 2 2A3 2A3
+£mat [’(/)7 gw/] ) (1477)
where 3 is an arbitrary constant and matter fields v do not couple to the metric g,, but to

Guv = Guv + T + %@m&ﬂr. Here again, the recovery of GR in the UV is possible via a strong
3
coupling phenomena, where the interactions for m are already important at the scale A3 < Mpy,
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well before the interactions for the usual helicity-2 mode. This strong coupling, as well as the
peculiar coupling to matter sources, have distinguishable features in cosmology as is explained
below [11, 478].

1.4.7.2 Observations

All models of modified gravity presented in this section have in common the presence of at least
one additional helicity-0 degree of freedom that is not an arbitrary scalar, but descends from a
full-fledged spin-two field. As such it has no potential and enters the Lagrangian via very specific
derivative terms fixed by symmetries. However, tests of gravity severely constrain the presence of
additional scalar degrees of freedom. As is well known, in theories of massive gravity the helicity-0
mode can evade fifth-force constraints in the vicinity of matter if the helicity-0 mode interactions
are important enough to freeze out the field fluctuations [913]. This Vainshtein mechanism is
similar in spirit but different in practice to the chameleon and symmetron mechanisms presented
in detail in the next Sections 1.4.7.3 and 1.4.7.4. One key difference relies on the presence of
derivative interactions rather than a specific potential. So, rather than becoming massive in dense
regions, in the Vainshtein mechanism the helicity-0 mode becomes weakly coupled to matter (and
light, i.e., sources in general) at high energy. This screening of scalar mode can yet have distinct
signatures in cosmology and in particular for structure formation.

1.4.7.3 Screening mechanisms

While quintessence introduces a new degree of freedom to explain the late-time acceleration of
the universe, the idea behind modified gravity is instead to tackle the core of the cosmological
constant problem and its tuning issues as well as screening any fifth forces that would come
from the introduction of extra degrees of freedom. As mentioned in Section 1.4.4.1, the strength
with which these new degrees of freedom can couple to the fields of the standard model is very
tightly constrained by searches for fifth forces and violations of the weak equivalence principle.
Typically the strength of the scalar mediated interaction is required to be orders of magnitude
weaker than gravity. It is possible to tune this coupling to be as small as is required, leading
however to additional naturalness problems. Here we discuss in more detail a number of ways
in which new scalar degrees of freedom can naturally couple to standard model fields, whilst still
being in agreement with observations, because a dynamical mechanism ensures that their effects
are screened in laboratory and solar system tests of gravity. This is done by making some property
of the field dependent on the background environment under consideration. These models typically
fall into two classes; either the field becomes massive in a dense environment so that the scalar force
is suppressed because the Compton wavelength of the interaction is small, or the coupling to matter
becomes weaker in dense environments to ensure that the effects of the scalar are suppressed. Both
types of behavior require the presence of nonlinearities.

Density dependent masses: The chameleon. The chameleon [499] is the archetypal model of
a scalar field with a mass that depends on its environment, becoming heavy in dense environments
and light in diffuse ones. The ingredients for construction of a chameleon model are a conformal
coupling between the scalar field and the matter fields of the standard model, and a potential for
the scalar field, which includes relevant self-interaction terms.

In the presence of non-relativistic matter these two pieces conspire to give rise to an effective
potential for the scalar field

Vert(¢) = V(¢) + pA(9), (1.4.78)

where V(¢) is the bare potential, p the local energy density and A(¢) the conformal coupling
function. For suitable choices of A(¢) and V(¢) the effective potential has a minimum and the
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position of the minimum depends on p. Self-interaction terms in V(¢) ensure that the mass of
the field in this minimum also depends on p so that the field becomes more massive in denser
environments.

The environmental dependence of the mass of the field allows the chameleon to avoid the
constraints of fifth-force experiments through what is known as the thin-shell effect. If a dense
object is embedded in a diffuse background the chameleon is massive inside the object. There, its
Compton wavelength is small. If the Compton wavelength is smaller than the size of the object,
then the scalar mediated force felt by an observer at infinity is sourced, not by the entire object,
but instead only by a thin shell of matter (of depth the Compton wavelength) at the surface. This
leads to a natural suppression of the force without the need to fine tune the coupling constant.

1.4.7.4 Density dependent couplings

The Vainshtein Mechanism. In models such as DGP and the Galileon, the effects of the scalar
field are screened by the Vainshtein mechanism [913, 299]. This occurs when nonlinear, higher-
derivative operators are present in the Lagrangian for a scalar field, arranged in such a way that
the equations of motion for the field are still second order, such as the interactions presented in
Eq. (1.4.73).

In the presence of a massive source the nonlinear terms force the suppression of the scalar force
in the vicinity of a massive object. The radius within which the scalar force is suppressed is known
as the Vainshtein radius. As an example in the DGP model the Vainshtein radius around a massive

object of mass M is
M N\
. -, 1.4.79
" (47TMP1) A ( )

where A is the strong coupling scale introduced in section 1.4.7.1. For the Sun, if m ~ 10733 eV,
or in other words, A~ = 1000 km, then the Vainshtein radius is r, ~ 102 pc.

Inside the Vainshtein radius, when the nonlinear, higher-derivative terms become important
they cause the kinetic terms for scalar fluctuations to become large. This can be interpreted as a
relative weakening of the coupling between the scalar field and matter. In this way the strength
of the interaction is suppressed in the vicinity of massive objects.

The Symmetron. The symmetron model [436] is in many ways similar to the chameleon model
discussed above. It requires a conformal coupling between the scalar field and the standard model
and a potential of a certain form. In the presence of non-relativistic matter this leads to an effective
potential for the scalar field

Vir(9) = —5 (53— #2) & + A" (1.480)
where M, p and A are parameters of the model, and p is the local energy density.

In sufficiently dense environments, p > p2M?, the field sits in a minimum at the origin. As
the local density drops the symmetry of the field is spontaneously broken and the field falls into
one of the two new minima with a non-zero vacuum expectation value. In high-density symmetry-
restoring environments, the scalar field vacuum expectation value should be near zero and fluctu-
ations of the field should not couple to matter. Thus, the symmetron force in the exterior of a
massive object is suppressed because the field does not couple to the core of the object.

The Olive—Pospelov model. The Olive-Pospelov model [696] again uses a scalar conformally
coupled to matter. In this construction both the coupling function and the scalar field potential
are chosen to have quadratic minima. If the background field takes the value that minimizes the
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coupling function, then fluctuations of the scalar field decouple from matter. In non-relativistic
environments the scalar field feels an effective potential, which is a combinations of these two
functions. In high-density environments the field is very close to the value that minimizes the form
of the coupling function. In low-density environments the field relaxes to the minimum of the bare
potential. Thus, the interactions of the scalar field are suppressed in dense environments.

1.4.8 Einstein Aether and its generalizations

In 1983 it was suggested by Milgrom [659] that the emerging evidence for the presence of dark
matter in galaxies could follow from a modification either to how ‘baryonic’ matter responded to
the Newtonian gravitational field it created or to how the gravitational field was related to the
baryonic matter density. Collectively these ideas are referred to as MOdified Newtonian Dynamics
(MOND). By way of illustration, MOND may be considered as a modification to the non-relativistic

Poisson equation:
A ( <Va |)V\I/) =4nGp, (1.4.81)
0

where U is the gravitational potential, ag is a number with dimensions Length~—! and p is the
baryonic matter density. The number ag is determined by looking at the dynamics of visible
matter in galaxies [783]. The function p(z) would simply be equal to unity in Newtonian gravity.
In MOND, the functional form is only fixed at its limits: p — 1 as ¢ — oo and p — z as z — 0.

We are naturally interested in a relativistic version of such a proposal. The building block is
the perturbed spacetime metric already introduced in Eq. 1.3.8

ds* = —(1 +20)dt* + (1 — 20)a’(t)(dR* + R*d0?). (1.4.82)

A simple approach is to introduce a dynamical clock field, which we will call A#. If it has solutions
aligned with the time-like coordinate t* then it will be sensitive to ¥. The dynamical nature of
the field implies that it should have an action that will contain gradients of the field and thus
potentially scalars formed from gradients of ¥, as we seek. A family of covariant actions for the
clock field is as follows [988]:

I[g®, A% )\ = 16 G/ FLQ (K)4+A(A%A, +1)

where
K = PKMV AV, As (1.4.83)

with
K“V’Y[s _ Clguyguts + ng;u/g"/ts + ngl“s V6 (1484)

The quantity ¢ is a number with dimensions of length, the ¢4 are dimensionless constants, the
Lagrange multiplier field A enforces the unit-timelike constraint on A%, and F is a function. These
models have been termed Generalized Einstein-Aether (GEA) theories, emphasizing the coexistence
of general covariance and a ‘preferred’ state of rest in the model, i.e., keeping time with A*.

Indeed, when the geometry is of the form (1.4.82), anisotropic stresses are negligible and A*
is aligned with the flow of time ¢*, then one can find appropriate values of the c4 and ¢ such
that K is dominated by a term equal to [VW¥|?/aZ. This influence then leads to a modification to
the time-time component of Einstein’s equations: instead of reducing to Poisson’s equation, one
recovers an equation of the form (1.4.81). Therefore the models are successful covariant realizations
of MOND.
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Interestingly, in the FLRW limit ®, ¥ — 0, the time-time component of Einstein’s equations in
the GEA model becomes a modified Friedmann equation:

H? 8rG
0

where the function 3 is related to I’ and its derivatives with respect to . The dynamics in galaxies
prefer a value ag on the order the Hubble parameter today Hp [783] and so one typically gets a
modification to the background expansion with a characteristic scale Hy, i.e., the scale associated
with modified gravity models that produce dark-energy effects. Ultimately the GEA model is a
phenomenological one and as such there currently lack deeper reasons to favor any particular form
of F. However, one may gain insight into the possible solutions of (1.4.85) by looking at simple
forms for F. In [991] the monomial case F' o< K™ec was considered where the kinetic index nq. was
allowed to vary. Solutions with accelerated expansion were found that could mimic dark energy.

Returning to the original motivation behind the theory, the next step is to look at the theory
on cosmological scales and see whether the GEA models are realistic alternatives to dark matter.
As emphasized, the additional structure in spacetime is dynamical and so possesses independent
degrees of freedom. As the model is assumed to be uncoupled to other matter, the gravitational
field equations would regard the influence of these degrees of freedom as a type of dark matter
(possibly coupled non-minimally to gravity, and not necessarily ‘cold’).

The possibility that the model may then be a viable alternative to the dark sector in back-
ground cosmology and linear cosmological perturbations has been explored in depth in [989, 564]
and [991]. As an alternative to dark matter, it was found that the GEA models could replicate
some but not all of the following features of cold dark matter: influence on background dynamics
of the universe; negligible sound speed of perturbations; growth rate of dark matter ‘overdensity’;
absence of anisotropic stress and contribution to the cosmological Poisson equation; effective mini-
mal coupling to the gravitational field. When compared to the data from large scale structure and
the CMB, the model fared significantly less well than the Concordance Model and so is excluded.
If one relaxes the requirement that the vector field be responsible for the effects of cosmological
dark matter, one can look at the model as one responsible only for the effects of dark energy. It
was found [991] that the current most stringent constraints on the model’s success as dark energy
were from constraints on the size of large scale CMB anisotropy. Specifically, possible variation
in w(z) of the ‘dark energy’ along with new degrees of freedom sourcing anisotropic stress in the
perturbations was found to lead to new, non-standard time variation of the potentials ® and W.
These time variations source large scale anisotropies via the integrated Sachs—Wolfe effect, and the
parameter space of the model is constrained in avoiding the effect becoming too pronounced.

In spite of this, given the status of current experimental bounds it is conceivable that a more
successful alternative to the dark sector may share some of these points of departure from the
Concordance Model and yet fare significantly better at the level of the background and linear
perturbations.

1.4.9 The Tensor-Vector-Scalar theory of gravity

Another proposal for a theory of modified gravity arising from Milgrom’s observation is the Tensor-
Vector-Scalar theory of gravity, or TeVeS. TeVeS theory is bimetric with two frames: the “geometric
frame” for the gravitational fields, and the “physical frame”, for the matter fields. The three
gravitational fields are the metric gqp (with connection @a) that we refer to as the geometric
metric, the vector field A, and the scalar field ¢. The action for all matter fields, uses a single
physical metric gqp (with connection V,). The two metrics are related via an algebraic, disformal
relation [116] as

Gap = € 2?Gap — 25inh(20) A, Ay . (1.4.86)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2013-6


http://www.livingreviews.org/lrr-2013-6

Cosmology and Fundamental Physics with the Euclid Satellite 51

Just like in the Generalized Einstein-Aether theories, the vector field is further enforced to be
unit-timelike with respect to the geometric metric, i.e.,

GPALA, = A%A, = —1. (1.4.87)

The theory is based on an action S, which is split as S = S5 + 5S4 + S¢ + S;, where

1 4 ~ T
R _ 1.4.
S =15 | o VIR, (1.4.88)

where g and R are the determinant and scalar curvature of Guv respectively and G is the bare
gravitational constant,

1
Sy = 3G /d4:c V=3 [KF™F,, — 2\(A, A" +1)], (1.4.89)
7T

where Fp, = V,Ap — VpA, leads to a Maxwellian kinetic term and A is a Lagrange multiplier
ensuring the unit-timelike constraint on A, and K is a dimensionless constant (note that indices
on Fy;, are raised using the geometric metric, i.e., F% = §°°Fy;) and

1 o
5 = ~Torc /d%\/jg {“9 "VadVid + V(u)] , (1.4.90)

where 1 is a non-dynamical dimensionless scalar field, §** = 32 — A2A® and V' (u) is an arbitrary
function that typically depends on a scale £5. The matter is coupled only to the physical metric
gab and defines the matter stress-energy tensor T, through 4.5, = —% [ d*z/=g Tup 6g°°. The
TeVeS action can be written entirely in the physical frame [987, 840] or in a diagonal frame [840)]
where the scalar and vector fields decouple.

In a Friedmann universe, the cosmological evolution is governed by the Friedmann equation
3H? = 87Ge™ 2 (py +p), (1.4.91)

where H is the Hubble rate in terms of the geometric scale factor, p is the physical matter density
that obeys the energy conservation equation with respect to the physical metric and where the

scalar field energy density is
e2¢ dVv
=— (p—+V 1.4.92

o= 167G (”d,ﬂL ) (1.4.92)

Exact analytical and numerical solutions with the Bekenstein free function have been found in [841]
and in [318]. It turns out that energy density tracks the matter fluid energy density. The ratio
of the energy density of the scalar field to that of ordinary matter is approximately constant,
so that the scalar field exactly tracks the matter dynamics. In realistic situations, the radiation
era tracker is almost never realized, as has been noted by Dodelson and Liguori, but rather py is
subdominant and slowly-rolling and ¢ oc a*/®. [157] studied more general free functions which have
the Bekenstein function as a special case and found a whole range of behavior, from tracking and
accelerated expansion to finite time singularities. [309] have studied cases where the cosmological
TeVeS equations lead to inflationary/accelerated expansion solutions.

Although no further studies of accelerated expansion in TeVeS have been performed, it is very
plausible that certain choices of function will inevitably lead to acceleration. It is easy to see
that the scalar field action has the same form as a k-essence/k-inflation [61] action which has been
considered as a candidate theory for acceleration. It is unknown in general whether this has similar
features as the uncoupled k-essence, although Zhao’s study indicates that this a promising research
direction [984].
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Figure 1: Left: the cosmic microwave background angular power spectrum [(I + 1)C;/(27) for TeVeS
(solid) and ACDM (dotted) with WMAP 5-year data [689]. Right: the matter power spectrum P(k) for
TeVeS (solid) and ACDM (dotted) plotted with SDSS data.

In TeVeS, cold dark matter is absent. Therefore, in order to get acceptable values for the physi-
cal Hubble constant today (i.e., around Hy ~ 70 km/s/Mpc), we have to supplement the absence of
CDM with something else. Possibilities include the scalar field itself, massive neutrinos [841, 364]
and a cosmological constant. At the same time, one has to get the right angular diameter distance
to recombination [364]. These two requirements can place severe constraints on the allowed free
functions.

Until TeVeS was proposed and studied in detail, MOND-type theories were assumed to be
fatally flawed: their lack of a dark matter component would necessarily prevent the formation
of large-scale structure compatible with current observational data. In the case of an Einstein
universe, it is well known that, since baryons are coupled to photons before recombination they do
not have enough time to grow into structures on their own. In particular, on scales smaller than
the diffusion damping scale perturbations in such a universe are exponentially damped due to the
Silk-damping effect. CDM solves all of these problems because it does not couple to photons and
therefore can start creating potential wells early on, into which the baryons fall.

TeVeS contains two additional fields, which change the structure of the equations significantly.
The first study of TeVeS predictions for large-scale structure observations was conducted in [841].
They found that TeVeS can indeed form large-scale structure compatible with observations depend-
ing on the choice of TeVeS parameters in the free function. In fact the form of the matter power
spectrum P(k) in TeVeS looks quite similar to that in ACDM. Thus TeVeS can produce matter
power spectra that cannot be distinguished from ACDM by current observations. One would have
to turn to other observables to distinguish the two models. The power spectra for TeVeS and
ACDM are plotted on the right panel of Figure 1. [318] provided an analytical explanation of the
growth of structure seen numerically by [841] and found that the growth in TeVeS is due to the
vector field perturbation.

It is premature to claim (as in [843, 855]) that only a theory with CDM can fit CMB ob-
servations; a prime example to the contrary is the EBI theory [83]. Nevertheless, in the case of
TeVeS [841] numerically solved the linear Boltzmann equation in the case of TeVeS and calculated
the CMB angular power spectrum for TeVeS. By using initial conditions close to adiabatic the
spectrum thus found provides very poor fit as compared to the ACDM model (see the left panel
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of Figure 1). The CMB seems to put TeVeS into trouble, at least for the Bekenstein free function.
The result of [318] has a further direct consequence. The difference ® — ¥, sometimes named
the gravitational slip (see Section 1.3.2), has additional contributions coming from the perturbed
vector field a. Since the vector field is required to grow in order to drive structure formation, it
will inevitably lead to a growing ® — W. If the difference ® — ¥ can be measured observationally,
it can provide a substantial test of TeVeS that can distinguish TeVeS from ACDM.

1.5 (Generic properties of dark energy and modified gravity
models

This section explores some generic issues that are not connected to particular models (although we
use some specific models as examples). First, we ask ourselves to which precision we should measure
w in order to make a significant progress in understanding dark energy. Second, we discuss the
role of the anisotropic stress in distinguishing between dark energy and modified gravity models.
Finally, we present some general consistency relations among the perturbation variables that all
models of modified gravity should fulfill.

1.5.1 To which precision should we measure w?
Two crucial questions that are often asked in the context of dark-energy surveys:

e Since w is so close to —1, do we not already know that the dark energy is a cosmological
constant?

e To which precision should we measure w? Or equivalently, why is the Euclid target precision
of about 0.01 on wy and 0.1 on w, interesting?

In this section we will attempt to answer these questions at least partially, in two different
ways. We will start by examining whether we can draw useful lessons from inflation, and then we
will look at what we can learn from arguments based on Bayesian model comparison.

In the first part we will see that for single field slow-roll inflation models we effectively measure
w ~ —1 with percent-level accuracy (see Figure 2); however, the deviation from a scale invariant
spectrum means that we nonetheless observe a dynamical evolution and, thus, a deviation from an
exact and constant equation of state of w = —1. Therefore, we know that inflation was not due to
a cosmological constant; we also know that we can see no deviation from a de Sitter expansion for
a precision smaller than the one Euclid will reach.

In the second part we will consider the Bayesian evidence in favor of a true cosmological constant
if we keep finding w = —1; we will see that for priors on wy and w, of order unity, a precision
like the one for Euclid is necessary to favor a true cosmological constant decisively. We will also
discuss how this conclusion changes depending on the choice of priors.

1.5.1.1 Lessons from inflation

In all probability the observed late-time acceleration of the universe is not the first period of
accelerated expansion that occurred during its evolution: the current standard model of cosmology
incorporates a much earlier phase with ¢ > 0, called inflation. Such a period provides a natural
explanation for several late-time observations:

e Why is the universe very close to being spatially flat?

e Why do we observe homogeneity and isotropy on scales that were naively never in causal
contact?
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e What created the initial fluctuations?

In addition, inflation provides a mechanism to get rid of unwanted relics from phase transitions in
the early universe, like monopoles, that arise in certain scenarios (e.g., grand-unified theories).

While there is no conclusive proof that an inflationary phase took place in the early universe,
it is surprisingly difficult to create the observed fluctuation spectrum in alternative scenarios that
are strictly causal and only act on sub-horizon scales [854, 803].

If, however, inflation took place, then it seems natural to ask the question whether its observed
properties appear similar to the current knowledge about the dark energy, and if yes, whether we
can use inflation to learn something about the dark energy. The first lesson to draw from inflation
is that it was not due to a pure cosmological constant. This is immediately clear since we exist:
inflation ended. We can go even further: if Planck confirms the observations of a deviation from a
scale invariant initial spectrum (ns # 1) of WMAP [526] then this excludes an exactly exponential
expansion during the observable epoch and, thus, also a temporary, effective cosmological constant.

If there had been any observers during the observationally accessible period of inflation, what
would they have been seeing? Following the analysis in [475], we notice that

2 H 2

1+w:—§ﬁ:§5H, (1.5.1)
where e = 2M3,(H'/H)? and here the prime denotes a derivative with respect to the inflaton
field. Since, therefore, the tensor-to-scalar ratio is linked to the equation of state parameter through
r ~ 24(1 + w) we can immediately conclude that no deviation of from w = —1 during inflation
has been observed so far, just as no such deviation has been observed for the contemporary dark
energy. At least in this respect inflation and the dark energy look similar. However, we also know
that

dIn(1 + w)

dN

where ng = 2M}§1H”/H is related to the scalar spectral index by 2ng = (ns — 1) 4+ 4eg. Thus,
if ng # 1 we have that either ny # 0 or ey # 0, and consequently either w # —1 or w is not
constant.

As already said earlier, we conclude that inflation is not due to a cosmological constant. How-
ever, an observer back then would nonetheless have found w ~ —1. Thus, observation of w ~ —1
(at least down to an error of about 0.02, see Figure 2) does not provide a very strong reason to
believe that we are dealing with a cosmological constant.

We can rewrite Eq. (1.5.2) as

= 2(7]H — E‘H) (152)

(14 w) = —~(ny = 1)+ M ~ 0.007+ M (1.5.3)
6 3 3
Naively it would appear rather fine-tuned if gy precisely canceled the observed contribution from
ns — 1. Following this line of reasoning, if ey and 1y are of about the same size, then we would
expect 1+ w to be about 0.005 to 0.015, well within current experimental bounds and roughly at
the limit of what FEuclid will be able to observe.

However, this last argument is highly speculative, and at least for inflation we know that there
are classes of models where the cancellation is indeed natural, which is why one cannot give a lower
limit for the amplitude of primordial gravitational waves. On the other hand, the observed period
of inflation is probably in the middle of a long slow-roll phase during which w tends to be close
to —1 (cf. Figure 3), while near the end of inflation the deviations become large. Additionally,
inflation happened at an energy scale somewhere between 1 MeV and the Planck scale, while the
energy scale of the late-time accelerated expansion is of the order of 1072 eV. At least in this
respect the two are very different.
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Figure 2: The evolution of w as a function of the comoving scale k, using only the 5-year WMAP CMB
data. Red and yellow are the 95% and 68% confidence regions for the LV formalism. Blue and purple are
the same for the flow-equation formalism. From the outside inward, the colored regions are red, yellow,
blue, and purple. Image reproduced by permission from [475]; copyright by APS.
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Figure 3: The complete evolution of w(N), from the flow-equation results accepted by the CMB likelihood.
Inflation is made to end at N = 0 where w(N = 0) = —1/3 corresponding to eg(N = 0) = 1. For our
choice of priors on the slow-roll parameters at N = 0, we find that w decreases rapidly towards —1 (see
inset) and stays close to it during the period when the observable scales leave the horizon (N = 40—60).
Image reproduced by permission from [475]; copyright by APS.
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1.5.1.2 Higgs-Dilaton Inflation: a connection between the early and late universe
acceleration

Despite previous arguments, it is natural to ask for a connection between the two known accelera-
tion periods. In fact, in the last few years there has been a renewal of model building in inflationary
cosmology by considering the fundamental Higgs as the inflaton field [133]. Such an elegant and
economical model can give rise to the observed amplitude of CMB anisotropies when we include a
large non-minimal coupling of the Higgs to the scalar curvature. In the context of quantum field
theory, the running of the Higgs mass from the electroweak scale to the Planck scale is affected
by this non-minimal coupling in such a way that the beta function of the Higgs’ self-coupling
vanishes at an intermediate scale (u ~ 101° GeV), if the mass of the Higgs is precisely 126 GeV,
as measured at the LHC. This partial fixed point (other beta functions do not vanish) suggests
an enhancement of symmetry at that scale, and the presence of a Nambu—Goldstone boson (the
dilaton field) associated with the breaking of scale invariance [820]. In a subsequent paper [383],
the Higgs-Dilaton scenario was explored in full detail. The model predicts a bound on the scalar
spectral index, ns < 0.97, with negligible associated running, —0.0006 < dlnns/dInk < 0.00015,
and a scalar to tensor ratio, 0.0009 < r < 0.0033, which, although out of reach of the Planck satel-
lite mission, is within the capabilities of future CMB satellite projects like PRISM [52]. Moreover,
the model predicts that, after inflation, the dilaton plays the role of a thawing quintessence field,
whose slow motion determines a concrete relation between the early universe fluctuations and the
equation of state of dark energy, 3(1 + w) = 1 — ng > 0.03, which could be within reach of Euclid
satellite mission [383]. Furthermore, within the HDI model, there is also a relation between the
running of the scalar tilt and the variation of w(a), dlnns/dInk = 3w,, a prediction that can
easily be ruled out with future surveys.

These relationships between early and late universe acceleration parameters constitute a fun-
damental physics connection within a very concrete and economical model, where the Higgs plays
the role of the inflaton and the dilaton is a thawing quintessence field, whose dynamics has almost
no freedom and satisfies all of the present constraints [383].

1.5.1.3 When should we stop: Bayesian model comparison

In the previous section we saw that inflation provides an argument why an observation of w ~ —1
need not support a cosmological constant strongly. Let us now investigate this argument more
precisely with Bayesian model comparison. One model, M, posits that the accelerated expansion
is due to a cosmological constant. The other models assume that the dark energy is dynamical, in
a way that is well parametrized either by an arbitrary constant w (model M7) or by a linear fit
w(a) = wop + (1 — a)w, (model Mz). Under the assumption that no deviation from w = —1 will be
detected in the future, at which point should we stop trying to measure w ever more accurately?
The relevant target here is to quantify at what point we will be able to rule out an entire class of
theoretical dark-energy models (when compared to ACDM) at a certain threshold for the strength
of evidence.

Here we are using the constant and linear parametrization of w because on the one hand we
can consider the constant w to be an effective quantity, averaged over redshift with the appro-
priate weighting factor for the observable, see [838], and on the other hand because the precision
targets for observations are conventionally phrased in terms of the figure of merit (FoM) given by

|Cov(wo,wy)|. We will, therefore, find a direct link between the model probability and the
FoM. It would be an interesting exercise to repeat the calculations with a more general model,
using e.g. PCA, although we would expect to reach a similar conclusion.

Bayesian model comparison aims to compute the relative model probability

P(Mo|d) _ P(d|Mo) P(Mo)

P(Mi|d) — P(d|My) P(My) (1.5.4)
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where we used Bayes formula and where By = P(d|My)/P(d|M;) is called the Bayes factor. The
Bayes factor is the amount by which our relative belief in the two models is modified by the data,
with In By; > (< 0) indicating a preference for model 0 (model 1). Since the model My is nested
in M; at the point w = —1 and in model Ms at (wg = —1,w, = 0), we can use the Savage—Dickey
(SD) density ratio [e.g. 894]. Based on SD, the Bayes factor between the two models is just the ratio
of posterior to prior at w = —1 or at (wy = —1, w, = 0), marginalized over all other parameters.
Let us start by following [900] and consider the Bayes factor By, between a cosmological con-
stant model w = —1 and a free but constant effective w. If we assume that the data are compatible
with weg = —1 with an uncertainty o, then the Bayes factor in favor of a cosmological constant is

given by
20 + A A AN
B:,/_+—[ i (__+)_ i (_)} , 155
- . erfc N~ erfe NG~ ( )

where for the evolving dark-energy model we have adopted a flat prior in the region —1 — A_ <
Wegg < —1 + A4 and we have made use of the Savage—Dickey density ratio formula [see 894]. The
prior, of total width A = Ay +A_ | is best interpreted as a factor describing the predictivity of the
dark-energy model under consideration. For instance, in a model where dark energy is a fluid with
a negative pressure but satisfying the strong energy condition we have that Ay = 2/3, A_ = 0.
On the other hand, phantom models will be described by A, = 0,A_ > 0, with the latter
being possibly rather large. A model with a large A will be more generic and less predictive, and
therefore is disfavored by the Occam’s razor of Bayesian model selection, see Eq. (1.5.5). According
to the Jeffreys’ scale for the strength of evidence, we have a moderate (strong) preference for the
cosmological constant model for 2.5 < In By; < 5.0 (In Bg; > 5.0), corresponding to posterior odds
of 12:1 to 150:1 (above 150:1).

0.01 (next generation)

©
2 0 2
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1 1 .
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Figure 4: Required accuracy on wes = —1 to obtain strong evidence against a model where —1 — A_ <
weg < —1 + A4 as compared to a cosmological constant model, w = —1. For a given o, models to the
right and above the contour are disfavored with odds of more than 20:1.

We plot in Figure 4 contours of constant observational accuracy o in the model predictivity
space (A_,A}) for In B = 3.0 from Eq. (1.5.5), corresponding to odds of 20 to 1 in favor of a
cosmological constant (slightly above the “moderate” threshold. The figure can be interpreted as
giving the space of extended models that can be significantly disfavored with respect to w = —1 at
a given accuracy. The results for the 3 benchmark models mentioned above (fluid-like, phantom
or small departures from w = —1) are summarized in Table 1. Instead, we can ask the question
which precision needs to reached to support ACDM at a given level. This is shown in Table 2 for
odds 20:1 and 150:1. We see that to rule out a fluid-like model, which also covers the parameter

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2013-6


http://www.livingreviews.org/lrr-2013-6

58 Luca Amendola et al. (The Euclid Theory Working Group)

Table 1: Strength of evidence disfavoring the three benchmark models against a cosmological constant

model, using an indicative accuracy on w = —1 from present data, o ~ 0.1.
Model (A4,A_) | InB today (0 =0.1)
Phantom (0,10) 4.4 (strongly disfavored)
Fluid-like (2/3,0) 1.7 (slightly disfavored)
Small departures (0.01,0.01) | 0.0 (inconclusive)

space expected for canonical scalar field dark energy, we need to reach a precision comparable to
the one that the Euclid satellite is expected to attain.

Table 2: Required accuracy for future surveys in order to disfavor the three benchmark models against
w = —1 for two different strengths of evidence.

Model (A4, A_) | Required o for odds
>20:1 >150:1

Phantom (0, 10) 0.4 51072

Fluid-like (2/3,0) 3-1072  3.1073

Small departures  (0.01,0.01) | 4-107* 5.1075

By considering the model M> we can also provide a direct link with the target DETF FoM: Let
us choose (fairly arbitrarily) a flat probability distribution for the prior, of width Awg and Aw,
in the dark-energy parameters, so that the value of the prior is 1/(AwgAw,) everywhere. Let us
assume that the likelihood is Gaussian in wy and w, and centered on ACDM (i.e., the data fully
supports A as the dark energy).

As above, we need to distinguish different cases depending on the width of the prior. If you
accept the argument of the previous section that we expect only a small deviation from w = —1,
and set a prior width of order 0.01 on both wy and w,, then the posterior is dominated by the
prior, and the ratio will be of order 1 if the future data is compatible with w = —1. Since the
precision of the experiment is comparable to the expected deviation, both ACDM and evolving
dark energy are equally probable (as argued above and shown for model M; in Table 1), and we
have to wait for a detection of w # —1 or a significant further increase in precision (cf. the last
row in Table 2).

However, one often considers a much wider range for w, for example the fluid-like model with
wp € [-1/3,-1] and w, € [—1,1] with equal probability (and neglecting some subtleties near
w = —1). If the likelihood is much narrower than the prior range, then the value of the normalized
posterior at w = —1 will be 2/(27+/|Cov(wp, ws)| = FoM/m (since we excluded w < —1, else it
would half this value). The Bayes factor is then given by

AwgAw,FoM

™

Bgy = (1.5.6)
For the prior given above, we end up with By; ~ 4FoM/(37) = 0.4FoM. In order to reach a
“decisive” Bayes factor, usually characterized as InB > 5 or B > 150, we thus need a figure of
merit exceeding 375. Demanding that Euclid achieve a FoM > 500 places us, therefore, on the safe
side and allows to reach the same conclusions (the ability to favor ACDM decisively if the data is
in full agreement with w = —1) under small variations of the prior as well.

A similar analysis could be easily carried out to compare the cosmological constant model
against departures from FEinstein gravity, thus giving some useful insight into the potential of
future surveys in terms of Bayesian model selection.

To summarize, we used inflation as a dark-energy prototype to show that the current experi-
mental bounds of w &= —1.0+£0.1 are not yet sufficient to significantly favor a cosmological constant
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over other models. In addition, even when expecting a deviation of w = —1 of order unity, our
current knowledge of w does not allow us to favor A strongly in a Bayesian context. Here we
showed that we need to reach a percent level accuracy both to have any chance of observing a de-
viation of w from —1 if the dark energy is similar to inflation, and because it is at this point that a
cosmological constant starts to be favored decisively for prior widths of order 1. In either scenario,
we do not expect to be able to improve much our knowledge with a lower precision measurement
of w. The dark energy can of course be quite different from the inflaton and may lead to larger
deviations from w = —1. This indeed would be the preferred situation for Euclid, as then we will
be able to investigate much more easily the physical origin of the accelerate expansion. We can,
however, have departures from ACDM even if w is very close to —1 today. In fact most present
models of modified gravity and dynamical dark energy have a value of wy which is asymptotically
close to —1 (in the sense that large departures from this value is already excluded). In this sense,
for example, early dark-energy parameterizations (£2.) test the amount of dark energy in the past,
which can still be non negligible (ex. [723]). Similarly, a fifth force can lead to a background similar
to LCDM but different effects on perturbations and structure formation [79].

1.5.2 The effective anisotropic stress as evidence for modified gravity

As discussed in Section 1.4, all dark energy and modified gravity models can be described with
the same effective metric degrees of freedom. This makes it impossible in principle to distinguish
clearly between the two possibilities with cosmological observations alone. But while the cleanest
tests would come from laboratory experiments, this may well be impossible to achieve. We would
expect that model comparison analyses would still favor the correct model as it should provide the
most elegant and economical description of the data. However, we may not know the correct model
a priori, and it would be more useful if we could identify generic differences between the different
classes of explanations, based on the phenomenological description that can be used directly to
analyze the data.

Looking at the effective energy momentum tensor of the dark-energy sector, we can either try
to find a hint in the form of the pressure perturbation dp or in the effective anisotropic stress .
Whilst all scalar field dark energy affects dp (and for multiple fields with different sound speeds in
potentially quite complex ways), they generically have m = 0. The opposite is also true, modified
gravity models have generically 7 # 0 [537]. Radiation and neutrinos will contribute to anisotropic
stress on cosmological scales, but their contribution is safely negligible in the late-time universe.
In the following sections we will first look at models with single extra degrees of freedom, for which
we will find that 7 # 0 is a firm prediction. We will then consider the f(R,G) case as an example
for multiple degrees of freedom [782].

1.5.2.1 Modified gravity models with a single degree of freedom

In the prototypical scalar-tensor theory, where the scalar ¢ is coupled to R through F(p)R, we
find that m o< (F’/F)dp. This is very similar to the f(R) case for which 7 < (F’/F)§R (where now
F =df/dR). In both cases the generic model with vanishing anisotropic stress is given by F’ = 0,
which corresponds to a constant coupling (for scalar-tensor) or f(R) o R+ A. In both cases we
find the GR limit. The other possibility, d¢ = 0 or R = 0, imposes a very specific evolution on
the perturbations that in general does not agree with observations.

Another possible way to build a theory that deviates from GR is to use a function of the second-
order Lovelock function, the Gauss-Bonnet term G = R? — 4R, R* + RQBWR&W”. The Gauss—
Bonnet term by itself is a topological invariant in 4 spacetime dimensions and does not contribute
to the equation of motion. It is useful here since it avoids an Ostrogradski-type instability [967].
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In R+ f(G) models, the situation is slightly more complicated than for the scalar-tensor case, as
T~ ® :4H§W—4§¢>+4(H2+H) s¢ (1.5.7)

where the dot denotes derivative with respect to ordinary time and & = df /dG (see, e.g., [782]).
An obvious choice to force # = 0 is to take £ constant, which leads to R + G + A in the action,
and thus again to GR in four spacetime dimensions. There is no obvious way to exploit the extra
¢ terms in Eq. (1.5.7), with the exception of curvature dominated evolution and on small scales
(which is not very relevant for realistic cosmologies).

Finally, in DGP one has, with the notation of [41],

_ 2Hr, — 1
1+ Hr.(3Hr.—2)

>V d. (1.5.8)

This expression vanishes for Hr. = 1/2 (which is never reached in the usual scenario in which
Hr. — 1 from above) and for Hr, — oo (for large Hr. the expression in front of ® in (1.5.8)
vanishes like 1/(Hr.)). In the DGP scenario the absolute value of the anisotropic stress grows
over time and approaches the limiting value of ® — ¥ = ®/2. The only way to avoid this limit
is to set the crossover scale to be unobservably large, 7. o« M7/M3 — co. In this situation the
five-dimensional part of the action is suppressed and we end up with the usual 4D GR action.

In all of these examples only the GR limit has consistently no effective anisotropic stress in
situations compatible with observational results (matter dominated evolution with a transition
towards a state with w <« —1/3).

1.5.2.2 Balancing multiple degrees of freedom

In models with multiple degrees of freedom it is at least in principle possible to balance the
contributions in order to achieve a net vanishing 7. [782] explicitly study the case of f(R, Q)
gravity (please refer to this paper for details). The general equation,

W= % [6F L AHEY — 4D 1 4 (H2 n H) 54 : (1.5.9)

is rather complicated, and generically depends, e.g., on scale of the perturbations (except for &
constant, which in turn requires F' constant for 7 = 0 and corresponds again to the GR limit).
Looking only at small scales, k > aH, one finds

frr+16(H? + H)(H? + 2H) foe + 4(2H? + 3H) frg = 0. (1.5.10)

It is in principle possible to find simultaneous solutions of this equation and the modified Friedmann
(0-0 Einstein) equation, for a given H(t). As an example, the model f(R,G) = R+ G"R™ with

1

B 1
90

" ~ 180

(n&va), m (61+11vaT) (1.5.11)

allows for matter dominated evolution, H = 2/(3t), and has no anisotropic stress. It is however
not clear at all how to connect this model to different epochs and especially how to move towards a
future accelerated epoch with m = 0 as the above exponents are fine-tuned to produce no anisotropic
stress specifically only during matter domination. Additionally, during the transition to a de Sitter
fixed point one encounters generically severe instabilities.

In summary, none of the standard examples with a single extra degree of freedom discussed
above allows for a viable model with 7 = 0. While finely balanced solutions can be constructed
for models with several degrees of freedom, one would need to link the motion in model space to
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the evolution of the universe, in order to preserve m = 0. This requires even more fine tuning, and
in some cases is not possible at all, most notably for evolution to a de Sitter state. The effective
anisotropic stress appears therefore to be a very good quantity to look at when searching for generic
conclusions on the nature of the accelerated expansion from cosmological observations.

1.5.3 Parameterized frameworks for theories of modified gravity

As explained in earlier sections of this report, modified-gravity models cannot be distinguished
from dark-energy models by using solely the FLRW background equations. But by comparing the
background expansion rate of the universe with observables that depend on linear perturbations
of an FRW spacetime we can hope to distinguish between these two categories of explanations.
An efficient way to do this is via a parameterized, model-independent framework that describes
cosmological perturbation theory in modified gravity. We present here one such framework, the pa-
rameterized post-Friedmann formalism [73]® that implements possible extensions to the linearized
gravitational field equations.

The parameterized post-Friedmann approach (PPF) is inspired by the parameterized post-
Newtonian (PPN) formalism [961, 960], which uses a set of parameters to summarize leading-order
deviations from the metric of GR. PPN was developed in the 1970s for the purpose of testing
of alternative gravity theories in the solar system or binary systems, and is valid in weak-field,
low-velocity scenarios. PPN itself cannot be applied to cosmology, because we do not know the
exact form of the linearized metric for our Hubble volume. Furthermore, PPN can only test for
constant deviations from GR, whereas the cosmological data we collect contain inherent redshift
dependence.

For these reasons the PPF framework is a parameterization of the gravitational field equations
(instead of the metric) in terms of a set of functions of redshift. A theory of modified gravity can
be analytically mapped onto these PPF functions, which in turn can be constrained by data.

We begin by writing the perturbed Einstein field equations for spin-0 (scalar) perturbations in
the form:

0G, = 811G 6Ty, + 5U:f,ljetric + 6U3,’,°'f + gauge invariance fixing terms, (1.5.12)

where 67}, is the usual perturbed stress-energy tensor of all cosmologically-relevant fluids. The
tensor 6U. :f‘f“ic holds new terms that may appear in a modified theory, containing perturbations of
the metric (in GR such perturbations are entirely accounted for by 6G,.,). 5U3,‘,°'f‘ holds pertur-
bations of any new degrees of freedom that are introduced by modifications to gravity. A simple
example of the latter is a new scalar field, such as introduced by scalar-tensor or Galileon theories.
However, new degrees of freedom could also come from spin-0 perturbations of new tensor or vector
fields, Stiickelberg fields, effective fluids and actions based on curvature invariants (such as f (R)
gravity).

In principle there could also be new terms containing matter perturbations on the RHS of
Eq. (1.5.12). However, for theories that maintain the weak equivalence principle — i.e., those with
a Jordan frame where matter is uncoupled to any new fields — these matter terms can be eliminated
in favor of additional contributions to U™ and §UG; .

The tensor 6U, ;}},emc is then expanded in terms of two gauge-invariant perturbation variables

® and I'. & is one of the standard gauge-invariant Bardeen potentials, while [ is the following
combination of the Bardeen potentials: I= l/k(é + ’H\i/).AWe use I instead of the usual Bardeen

potential ¥ because I' has the same derivative order as ® (whereas ¥ does not). We then de-
duce that the only possible structure of (SU,rfl‘,emC that maintains the gauge-invariance of the field

3 Not to be confused with a different formalism of the same name by other authors [457].
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equations is a linear combination of ®, I' and their derivatives, multiplied by functions of the
cosmological background (see Eqs. (1.5.13)—(1.5.17) below).

oU l‘f;f'f' is similarly expanded in a set of gauge-invariant potentials {x;} that contain the new
degrees of freedom. [73] presented an algorithm for constructing the relevant gauge-invariant
quantities in any theory.

For concreteness we will consider here a theory that contains only one new degree of freedom and
is second-order in its equations of motion (a generic but not watertight requirement for stability,
see [967]). Then the four components of Eq. (1.5.12) are:

—a%6GY = 8ma%G prrdar + Aok?® + Fok*T 4 aok®x + arkx + k3 Ma (0 + 2¢) (1.5.13)
—a%6GY = v, [zmQG par(1 + war)0ar + Bok® + IokD + Bokx 4 BiX + k2 Mo (i + 2¢)|  (1.5.14)
a?0GE = 38ma’G pally + Cok*® + Crkd + Jok?T + JT + ~ok2% + v1k% + 7ok (1.5.15)

+ E3Mp (v + 2€) (1.5.16)

Ky

k

€1 :

s ~ Dy x N X .
a*6G :87ra2GpM(1+wM)EM+DO<I)+?1<I>+KOF+ I+ eox + /XH%X (1.5.17)

where 5@3 =0G — %5GZ. Each of the lettered coefficients in Egs. (1.5.13) —(1.5.17) is a function
of cosmological background quantities, i.e., functions of time or redshift; this dependence has
been suppressed above for clarity. Potentially the coefficients could also depend on scale, but this
dependence is not arbitrary [832]). These PPF coefficients are the analogy of the PPN parameters;
they are the objects that a particular theory of gravity ‘maps onto’, and the quantities to be
constrained by data. Numerous examples of the PPF coefficients corresponding to well-known
theories are given in [73].

The final terms in Egs. (1.5.13)—(1.5.16) are present to ensure the gauge invariance of the
modified field equations, as is required for any theory governed by a covariant action. The quantities
Mna, Mg and Mp are all pre-determined functions of the background. € and v are off-diagonal
metric perturbations, so these terms vanish in the conformal Newtonian gauge. The gauge-fixing
terms should be regarded as a piece of mathematical book-keeping; there is no constrainable
freedom associated with them.

One can then calculate observable quantities — such as the weak lensing kernel or the growth
rate of structure f(z) — using the parameterized field equations (1.5.13)—(1.5.17). Similarly, they
can be implemented in an Einstein-Boltzmann solver code such as cAMB [559] to utilize constraints
from the CMB. If we take the divergence of the gravitational field equations (i.e., the unperturbed
equivalent of Eq. (1.5.12)), the left-hand side vanishes due to the Bianchi identity, while the stress-
energy tensor of matter obeys its standard conservation equations (since we are working in the
Jordan frame). Hence the U-tensor must be separately conserved, and this provides the necessary
evolution equation for the variable y:

§ (VA [Ume™e 4 Udot]) =o0. (1.5.18)

Eq. (1.5.18) has two components. If one wishes to treat theories with more than two new degrees
of freedom, further information is needed to supplement the PPF framework.

The full form of the parameterized equations (1.5.13)—(1.5.17) can be simplified in the ‘qua-
sistatic regime’, that is, significantly sub-horizon scales on which the time derivatives of perturba-
tions can be neglected in comparison to their spatial derivatives [457]. Quasistatic lengthscales are
the relevant stage for weak lensing surveys and galaxy redshift surveys such as those of Euclid. A
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common parameterization used on these scales has the form:

2V2® = 87a’G pla, k) parAar, (1.5.19)
% — y(a, k), (1.5.20)

where {u, vy} are two functions of time and scale to be constrained. This parameterization has been
widely employed [131, 277, 587, 115, 737, 980, 320, 441, 442]. Tt has the advantages of simplicity
and somewhat greater physical transparency: u(a,k) can be regarded as describing evolution of
the effective gravitational constant, while y(a, k) can, to a certain extent, be thought of as acting
like a source of anisotropic stress (see Section 1.5.2).

Let us make a comment about the number of coefficient functions employed in the PPF for-
malism. One may justifiably question whether the number of unknown functions in Egs. (1.5.13) -
(1.5.17) could ever be constrained. In reality, the PPF coefficients are not all independent. The
form shown above represents a fully agnostic description of the extended field equations. However,
as one begins to impose restrictions in theory space (even the simple requirement that the modi-
fied field equations must originate from a covariant action), constraint relations between the PPF
coeflicients begin to emerge. These constraints remove freedom from the parameterization.

Even so, degeneracies will exist between the PPF coefficients. It is likely that a subset of them
can be well-constrained, while another subset have relatively little impact on current observables
and so cannot be tested. In this case it is justifiable to drop the untestable terms. Note that this
realization, in itself, would be an interesting statement — that there are parts of the gravitational
field equations that are essentially unknowable.

Finally, we note that there is also a completely different, complementary approach to parame-
terizing modifications to gravity. Instead of parameterizing the linearized field equations, one could
choose to parameterize the perturbed gravitational action. This approach has been used recently
to apply the standard techniques of effective field theory to modified gravity; see [107, 142, 411]
and references therein.

1.6 Nonlinear aspects

In this section we discuss how the nonlinear evolution of cosmic structures in the context of different
non-standard cosmological models can be studied by means of numerical simulations based on N-
body algorithms and of analytical approaches based on the spherical collapse model.

1.6.1 N-body simulations of dark energy and modified gravity

Here we discuss the numerical methods presently available for this type of analyses, and we review
the main results obtained so far for different classes of alternative cosmologies. These can be
grouped into models where structure formation is affected only through a modified expansion
history (such as quintessence and early dark-energy models, Section 1.4.1) and models where
particles experience modified gravitational forces, either for individual particle species (interacting
dark-energy models and growing neutrino models, Section 1.4.4.4) or for all types of particles in
the universe (modified gravity models).

1.6.1.1 Quintessence and early dark-energy models

In general, in the context of flat FLRW cosmologies, any dynamical evolution of the dark-energy
density (ppg # const. = pa) determines a modification of the cosmic expansion history with respect
to the standard ACDM cosmology. In other words, if the dark energy is a dynamical quantity, i.e.,
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if its equation of state parameter w # —1 exactly, for any given set of cosmological parameters
(Ho, Qcoms b, QpE, Qrad), the redshift evolution of the Hubble function H(z) will differ from
the standard ACDM case H(z).

Quintessence models of dark energy [954, 754] based on a classical scalar field ¢ subject to
a self-interaction potential V(¢) have an energy density py = $%/2 + V(¢) that evolves in time
according to the dynamical evolution of the scalar field, which is governed by the homogeneous

Klein—Gordon equation: -
G+3HG+ 2 =0. (1.6.1)
Here the dot denotes derivation w.r.t. ordinary time t. )

For a canonical scalar field, the equation of state parameter wy = py/pg, where py = ¢?/2 —
V(¢), will in general be larger than —1, and the density of dark energy ps will consequently be
larger than py at any redshift z > 0. Furthermore, for some simple choices of the potential function
such as those discussed in Section 1.4.1 (e.g., an exponential potential V' o exp(—a¢/Mp) or an
inverse-power potential V' o (¢/Mp))~%), scaling solutions for the evolution of the system can be
analytically derived. In particular, for an exponential potential, a scaling solution exists where the
dark energy scales as the dominant cosmic component, with a fractional energy density

_81Gpy m
Y= e

(1.6.2)

with n = 3 for matter domination and n = 4 for radiation domination. This corresponds to a
relative fraction of dark energy at high redshifts, which is in general not negligible, whereas during
matter and radiation domination Q5 ~ 0 and, therefore, represents a phenomenon of an early
emergence of dark energy as compared to ACDM where dark energy is for all purposes negligible
until z ~ 1.

Early dark energy (EDE) is, therefore, a common prediction of scalar field models of dark
energy, and observational constraints put firm bounds on the allowed range of )y at early times,
and consequently on the potential slope a.

As we have seen in Section 1.2.1, a completely phenomenological parametrization of EDE,
independent from any specific model of dynamical dark energy has been proposed by [956] as a
function of the present dark-energy density Qpg, its value at early times Qgpg, and the present
value of the equation of state parameter wy. From Eq. 1.2.4, the full expansion history of the
corresponding EDE model can be derived.

A modification of the expansion history indirectly influences also the growth of density pertur-
bations and ultimately the formation of cosmic structures. While this effect can be investigated
analytically for the linear regime, N-body simulations are required to extend the analysis to the
nonlinear stages of structure formation. For standard Quintessence and EDE models, the only
modification that is necessary to implement into standard N-body algorithms is the computation
of the correct Hubble function H(z) for the specific model under investigation, since this is the
only way in which these non standard cosmological models can alter structure formation processes.

This has been done by the independent studies of [406] and [367], where a modified expansion
history consistent with EDE models described by the parametrization of Eq. 1.2.4 has been imple-
mented in the widely used N-body code GADGET-2 [857] and the properties of nonlinear structures
forming in these EDE cosmologies have been analyzed. Both studies have shown that the standard
formalism for the computation of the halo mass function still holds for EDE models at z = 0. In
other words, both the standard fitting formulae for the number density of collapsed objects as a
function of mass, and their key parameter . = 1.686 representing the linear overdensity at collapse
for a spherical density perturbation, remain unchanged also for EDE cosmologies.

The work of [406], however, investigated also the internal properties of collapsed halos in EDE
models, finding a slight increase of halo concentrations due to the earlier onset of structure forma-
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tion and most importantly a significant increment of the line-of-sight velocity dispersion of massive
halos. The latter effect could mimic a higher og normalization for cluster mass estimates based
on galaxy velocity dispersion measurements and, therefore, represents a potentially detectable
signature of EDE models.

1.6.1.2 Interacting dark-energy models

Another interesting class of non standard dark-energy models, as introduced in Section 1.4.4, is
given by coupled dark energy where a direct interaction is present between a Quintessence scalar
field ¢ and other cosmic components, in the form of a source term in the background continuity
equations:

d d

dL;ﬁ = —3H(1+ wy)py + B((ﬁ)d—j;(l — 3Wa)Pa 5 (1.6.3)
dpa do .

Fr —3H(1 + wa)pa — (D) d77(1 3Wa)pa (1.6.4)

where « represents a single cosmic fluid coupled to ¢.

While such direct interaction with baryonic particles (o = b) is tightly constrained by obser-
vational bounds, and while it is suppressed for relativistic particles (o = r) by symmetry reasons
(1 — 3w, = 0), a selective interaction with cold dark matter (CDM hereafter) or with massive
neutrinos is still observationally viable (see Section 1.4.4).

Since the details of interacting dark-energy models have been discussed in Section 1.4.4, here we
simply recall the main features of these models that have a direct relevance for nonlinear structure
formation studies. For the case of interacting dark energy, in fact, the situation is much more
complicated than for the simple EDE scenario discussed above. The mass of a coupled particle
changes in time due to the energy exchange with the dark-energy scalar field ¢ according to the
equation:

m(¢) = moe~ I #(#) ¢’ (1.6.5)

where mq is the mass at z = 0. Furthermore, the Newtonian acceleration of a coupled particle
(subscript ¢) gets modified as:

v, =—HG, — V&, — V,,. (1.6.6)
where H contains a new velocity-dependent acceleration:
2 (Z‘S —
Hv.=H l—ﬂd,ﬁ Ue (1.6.7)

and where a fifth-force acts only between coupled particles as
. = (1+26%)a., (1.6.8)

while ®,,. represents the gravitational potential due to all massive particles with no coupling to
the dark energy that exert a standard gravitational pull.

As a consequence of these new terms in the Newtonian acceleration equation the growth of
density perturbations will be affected, in interacting dark-energy models, not only by the different
Hubble expansion due to the dynamical nature of dark energy, but also by a direct modification
of the effective gravitational interactions at subhorizon scales. Therefore, linear perturbations of
coupled species will grow with a higher rate in these cosmologies In particular, for the case of a
coupling to CDM, a different amplitude of the matter power spectrum will be reached at z = 0
with respect to ACDM if a normalization in accordance with CMB measurements at high redshifts
is assumed.
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Clearly, the new acceleration equation (1.6.6) will have an influence also on the formation and
evolution of nonlinear structures, and a consistent implementation of all the above mentioned
effects into an N-body algorithm is required in order to investigate this regime.

For the case of a coupling to CDM (a coupling with neutrinos will be discussed in the next
section) this has been done, e.g., by [604, 870] with 1D or 3D grid-based field solvers, and more
recently by means of a suitable modification by [79] of the TreePM hydrodynamic N-body code
GADGET-2 [857].

Nonlinear evolution within coupled quintessence cosmologies has been addressed using various
methods of investigation, such as spherical collapse [611, 962, 618, 518, 870, 3, 129] and alternative
semi-analytic methods [787, 45]. N-body and hydro-simulations have also been done [604, 79, 76,
77, 80, 565, 562, 75, 980]. We list here briefly the main observable features typical of this class of
models:

e The suppression of power at small scales in the power spectrum of interacting dark-energy
models as compared to ACDM;

e The development of a gravitational bias in the amplitude of density perturbations of uncou-
pled baryons and coupled CDM particles defined as Py(k)/P.(k) < 1, which determines a
significant decrease of the baryonic content of massive halos at low redshifts in accordance
with a large number of observations [79, 75];

e The increase of the number density of high-mass objects at any redshift as compared to
ACDM |[see 77];

e An enhanced ISW effect [33, 35, 612]; such effects may be partially reduced when taking into
account nonlinearities, as described in [727];

e A less steep inner core halo profiles (depending on the interplay between fifth force and
velocity-dependent terms) [79, 76, 565, 562, 75];

e A lower concentration of the halos [79, 76, 562];

e Voids are emptier when a coupling is active [80].

Subsequent studies based on Adaptive Mesh Refinement schemes for the solution of the local scalar
field equation [561] have broadly confirmed these results.

The analysis has been extended to the case of non-constant coupling functions 3(¢) by [76], and
has shown how in the presence of a time evolution of the coupling some of the above mentioned
results no longer hold:

e Small scale power can be both suppressed and enhanced when a growing coupling function
is considered, depending on the magnitude of the coupling time derivative d8(¢)/d¢

e The inner overdensity of CDM halos, and consequently the halo concentrations, can both
decrease (as always happens for the case of constant couplings) or increase, again depending
on the rate of change of the coupling strength;

All these effects represent characteristic features of interacting dark-energy models and could
provide a direct way to observationally test these scenarios. Higher resolution studies would be
required in order to quantify the impact of a DE-CDM interaction on the statistical properties of
halo substructures and on the redshift evolution of the internal properties of CDM halos.

As discussed in Section 1.6.1, when a variable coupling 3(¢) is active the relative balance of
the fifth-force and other dynamical effects depends on the specific time evolution of the coupling
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strength. Under such conditions, certain cases may also lead to the opposite effect of larger halo
inner overdensities and higher concentrations, as in the case of a steeply growing coupling function
[see 76]. Alternatively, the coupling can be introduced by choosing directly a covariant stress-
energy tensor, treating dark energy as a fluid in the absence of a starting action [619, 916, 193,
794, 915, 613, 387, 192, 388].

1.6.1.3 Growing neutrinos

In case of a coupling between the dark-energy scalar field ¢ and the relic fraction of massive
neutrinos, all the above basic equations (1.6.5) —(1.6.8) still hold. However, such models are found
to be cosmologically viable only for large negative values of the coupling /5 [as shown by 36], that
according to Eq. 1.6.5 determines a neutrino mass that grows in time (from which these models
have been dubbed “growing neutrinos”). An exponential growth of the neutrino mass implies that
cosmological bounds on the neutrino mass are no longer applicable and that neutrinos remain
relativistic much longer than in the standard scenario, which keeps them effectively uncoupled
until recent epochs, according to Eqgs. (1.6.3 and 1.6.4). However, as soon as neutrinos become
non-relativistic at redshift z,, due to the exponential growth of their mass, the pressure terms
1 — 3w, in Egs. (1.6.3 and 1.6.4) no longer vanish and the coupling with the DE scalar field ¢
becomes active.

Therefore, while before z,. the model behaves as a standard ACDM scenario, after z,, the
non-relativistic massive neutrinos obey the modified Newtonian equation (1.6.6) and a fast growth
of neutrino density perturbation takes place due to the strong fifth force described by Eq. (1.6.8).

The growth of neutrino overdensities in the context of growing neutrinos models has been
studied in the linear regime by [668], predicting the formation of very large neutrino lumps at the
scale of superclusters and above (10—100 Mpc/h) at redshift z ~ 1.

The analysis has been extended to the nonlinear regime in [963] by following the spherical col-
lapse of a neutrino lump in the context of growing neutrino cosmologies. This study has witnessed
the onset of virialization processes in the nonlinear evolution of the neutrino halo at z ~ 1.3, and
provided a first estimate of the associated gravitational potential at virialization being of the order
of ®, ~ 10~ for a neutrino lump with radius R ~ 15 Mpc.

An estimate of the potential impact of such very large nonlinear structures onto the CMB
angular power spectrum through the Integrated Sachs—Wolfe effect has been attempted by [727].
This study has shown that the linear approximation fails in predicting the global impact of the
model on CMB anisotropies at low multipoles, and that the effects under consideration are very
sensitive to the details of the transition between the linear and nonlinear regimes and of the
virialization processes of nonlinear neutrino lumps, and that also significantly depend on possible
backreaction effects of the evolved neutrino density field onto the local scalar filed evolution.

A full nonlinear treatment by means of specifically designed N-body simulations is, therefore,
required in order to follow in further detail the evolution of a cosmological sample of neutrino
lumps beyond virialization, and to assess the impact of growing neutrinos models onto potentially
observable quantities as the low-multipoles CMB power spectrum or the statistical properties of
CDM large scale structures.

1.6.1.4 Modified gravity

Modified gravity models, presented in Section 1.4, represent a different perspective to account for
the nature of the dark components of the universe. Although most of the viable modifications
of GR are constructed in order to provide an identical cosmic expansion history to the standard
ACDM model, their effects on the growth of density perturbations could lead to observationally
testable predictions capable of distinguishing modified gravity models from standard GR plus a
cosmological constant.
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Since a modification of the theory of gravity would affect all test masses in the universe, i.e.,
including the standard baryonic matter, an asymptotic recovery of GR for solar system environ-
ments, where deviations from GR are tightly constrained, is required for all viable modified gravity
models. Such mechanism, often referred to as the “Chameleon effect”, represents the main differ-
ence between modified gravity models and the interacting dark-energy scenarios discussed above,
by determining a local dependence of the modified gravitational laws in the Newtonian limit.

While the linear growth of density perturbations in the context of modified gravity theories
can be studied [see, e.g., 456, 674, 32, 54] by parametrizing the scale dependence of the modified
Poisson and Euler equations in Fourier space (see the discussion in Section 1.3), the nonlinear
evolution of the “Chameleon effect” makes the implementation of these theories into nonlinear N-
body algorithms much more challenging. For this reason, very little work has been done so far in
this direction. A few attempts to solve the modified gravity interactions in the nonlinear regime by
means of mesh-based iterative relaxation schemes have been carried out by [700, 701, 800, 500, 981,
281, 964] and showed an enhancement of the power spectrum amplitude at intermediate and small
scales. These studies also showed that this nonlinear enhancement of small scale power cannot be
accurately reproduced by applying the linear perturbed equations of each specific modified gravity
theory to the standard nonlinear fitting formulae [as, e.g., 844].

Higher resolution simulations and new numerical approaches will be necessary in order to extend
these first results to smaller scales and to accurately evaluate the deviations of specific models of
modified gravity from the standard GR predictions to a potentially detectable precision level.

1.6.2 The spherical collapse model

A popular analytical approach to study nonlinear clustering of dark matter without recurring to
N-body simulations is the spherical collapse model, first studied by [413]. In this approach, one
studies the collapse of a spherical overdensity and determines its critical overdensity for collapse
as a function of redshift. Combining this information with the extended Press—Schechter theory
([743, 147]; see [976] for a review) one can provide a statistical model for the formation of structures
which allows to predict the abundance of virialized objects as a function of their mass. Although
it fails to match the details of N-body simulations, this simple model works surprisingly well and
can give useful insigths into the physics of structure formation. Improved models accounting for
the complexity of the collapse exist in the literature and offer a better fit to numerical simulations.
For instance, [823] showed that a significant improvement can be obtained by considering an
ellipsoidal collapse model. Furthermore, recent theoretical developments and new improvements
in the excursion set theory have been undertaken by [609] and other authors (see e.g., [321]).

The spherical collapse model has been generalized to include a cosmological constant by [718,
948]. [540] have used it to study the observational consequences of a cosmological constant on
the growth of perturbations. The case of standard quintessence, with speed of sound ¢, = 1,
have been studied by [937]. In this case, scalar fluctuations propagate at the speed of light and
sound waves maintain quintessence homogeneous on scales smaller than the horizon scale. In the
spherical collapse pressure gradients maintain the same energy density of quintessence between the
inner and outer part of the spherical overdensity, so that the evolution of the overdensity radius is
described by

R 4G

2 I o+ B0+ 300) 1.6.9
= 3 (Pm + Pq + 3Dq) (1.6.9)

where p,, denotes the energy density of dark matter while pg and pg denote the homogeneous
energy density and pressure of the quintessence field. Note that, although this equation looks
like one of the Friedmann equations, the dynamics of R is not the same as for a FLRW universe.
Indeed, p,,, evolves following the scale factor R, while the quintessence follows the external scale
factor a, according to the continuity equation pg + 3(a/a)(pg + pg) = 0.
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In the following we will discuss the spherical collapse model in the contest of other dark energy
and modified gravity models.

1.6.2.1 Clustering dark energy

In its standard version, quintessence is described by a minimally-coupled canonical field, with
speed of sound ¢, = 1. As mentioned above, in this case clustering can only take place on scales
larger than the horizon, where sound waves have no time to propagate. However, observations
on such large scales are strongly limited by cosmic variance and this effect is difficult to observe.
A minimally-coupled scalar field with fluctuations characterized by a practically zero speed of
sound can cluster on all observable scales. There are several theoretical motivations to consider
this case. In the limit of zero sound speed one recovers the Ghost Condensate theory proposed
by [56] in the context of modification of gravity, which is invariant under shift symmetry of the field
¢ — ¢ + constant. Thus, there is no fine tuning in assuming that the speed of sound is very small:
quintessence models with vanishing speed of sound should be thought of as deformations of this
particular limit where shift symmetry is recovered. Moreover, it has been shown that minimally-
coupled quintessence with an equation of state w < —1 can be free from ghosts and gradient
instabilities only if the speed of sound is very tiny, |cs| < 10715, Stability can be guaranteed
by the presence of higher derivative operators, although their effect is absent on cosmologically
relevant scales [260, 228, 259].

The fact that the speed of sound of quintessence may vanish opens up new observational
consequences. Indeed, the absence of quintessence pressure gradients allows instabilities to develop
on all scales, also on scales where dark matter perturbations become nonlinear. Thus, we expect
quintessence to modify the growth history of dark matter not only through its different background
evolution but also by actively participating to the structure formation mechanism, in the linear
and nonlinear regime, and by contributing to the total mass of virialized halos.

Following [258], in the limit of zero sound speed pressure gradients are negligible and, as long
as the fluid approximation is valid, quintessence follows geodesics remaining comoving with the
dark matter (see also [574] for a more recent model with identical phenomenology). In particular,
one can study the effect of quintessence with vanishing sound speed on the structure formation in
the nonlinear regime, in the context of the spherical collapse model. The zero speed of sound limit
represents the natural counterpart of the opposite case ¢, = 1. Indeed, in both cases there are no
characteristic length scales associated with the quintessence clustering and the spherical collapse
remains independent of the size of the object (see [95, 671, 692] for a study of the spherical collapse
when ¢, of quintessence is small but finite).

Due to the absence of pressure gradients quintessence follows dark matter in the collapse and
the evolution of the overdensity radius is described by

R 4G _

R 3
where the energy density of quintessence pg has now a different value inside and outside the
overdensity, while the pressure remains unperturbed. In this case the quintessence inside the
overdensity evolves following the internal scale factor R, pg + 3(R/R)(pg + Po) = 0 and the
comoving regions behave as closed FLRW universes. R satisfies the Friedmann equation and the
spherical collapse can be solved exactly [258].

Quintessence with zero speed of sound modifies dark matter clustering with respect to the
smooth quintessence case through the linear growth function and the linear threshold for collapse.
Indeed, for w > —1 (w < —1), it enhances (diminishes) the clustering of dark matter, the effect
being proportional to 1 + w. The modifications to the critical threshold of collapse are small and
the effects on the dark matter mass function are dominated by the modification on the linear
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Figure 5: Ratio of the total mass functions, which include the quintessence contribution, for ¢s = 0 and
cs =1 at z=0 (above) and z = 1 (below). Image reproduced by permission from [258]; copyright by IOP

and SISSA.
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dark matter growth function. Besides these conventional effects there is a more important and
qualitatively new phenomenon: quintessence mass adds to the one of dark matter, contributing to
the halo mass by a fraction of order ~ (1+w)Q¢q /.. Importantly, it is possible to show that the
mass associated with quintessence stays constant inside the virialized object, independently of the
details of virialization. Moreover ,the ratio between the virialization and the turn-around radii is
approximately the same as the one for ACDM computed by [540]. In Figure 5 we plot the ratio of
the mass function including the quintessence mass contribution, for the ¢, = 0 case to the smooth
cs = 1 case. The sum of the two effects is rather large: for values of w still compatible with the
present data and for large masses the difference between the predictions of the ¢; = 0 and the
¢s = 1 cases is of order one.

1.6.2.2 Coupled dark energy

We now consider spherical collapse within coupled dark-energy cosmologies. The presence of an
interaction that couples the cosmon dynamics to another species introduces a new force acting
between particles (CDM or neutrinos in the examples mentioned in Section 1.4.4) and mediated
by dark-energy fluctuations. Whenever such a coupling is active, spherical collapse, whose concept
is intrinsically based on gravitational attraction via the Friedmann equations, has to be suitably
modified in order to account for other external forces. As shown in [962] the inclusion of the fifth
force within the spherical collapse picture deserves particular caution. Here we summarize the
main results on this topic and we refer to [962] for a detailed illustration of spherical collapse in
presence of a fifth force.

If CDM is coupled to a quintessence scalar field as described in Sections 1.4.4 and 2.11 of the
present document, the full nonlinear evolution equations within the Newtonian limit read:

Om = =V Vom — (1 +6,)V - vy, (1.6.11)
Vin = —(2H = 80) Vi = (Vo V)V
—a 2V (® — B60) (1.6.12)
Abp = —Ba*Spm (1.6.13)
2
AD = —% za:apa (1.6.14)

These equations can be derived from the non-relativistic Navier—Stokes equations and from the
Bianchi identities written in presence of an external source of the type:

VT =Q, = —BT]0,0, (1.6.15)

where 77 is the stress energy tensor of the dark matter fluid and we are using comoving spatial
coordinates x and cosmic time ¢. Note that v,, is the comoving velocity, related to the peculiar
velocities by vy, = Vpec/a. They are valid for arbitrary quintessence potentials as long as the
scalar field is sufficiently light, i.e., miéqﬁ = V"(¢)d¢d <« Ad¢ for the scales under consideration.
For a more detailed discussion see [962]. Combining the above equations yields to the following
expression for the evolution of the matter perturbation d,,:

4 52 146,
§1+n;5 +—0 Adg, (1.6.16)

S = —(2H — ) by +

Linearization leads to: .
Om, =—(2H = B¢) b +a > Adegr. (1.6.17)
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where the effective gravitational potential follows the modified Poisson equation:

2
Adcg = —%ﬁmém (1425%) . (1.6.18)

Egs. (1.6.16) and (1.6.17) are the two main equations which correctly describe the nonlinear and
linear evolution for a coupled dark-energy model. They can be used, among other things, for
estimating the extrapolated linear density contrast at collapse J. in the presence of a fifth force.
Tt is possible to reformulate Eqs. (1.6.16) and (1.6.17) into an effective spherical collapse:

R : R) 1 1
=00 (H - R) —5 > [pa(l +3wa)] — 3 8% 0pm. (1.6.19)

[e%

Eq. (1.6.19) [611, 962], describes the general evolution of the radius of a spherical overdense region
within coupled quintessence. Comparing with the standard case (1.6.9) we notice the presence of
two additional terms: a ‘friction’ term and the coupling term 3% §p,,, the latter being responsible
for the additional attractive fifth force. Note that the ’friction’ term is actually velocity dependent
and its effects on collapse depend, more realistically, on the direction of the velocity, information
which is not contained within a spherical collapse picture and can be treated within simulations
[77, 565, 76, 562, 75]. We stress that it is crucial to include these additional terms in the equations,
as derived from the nonlinear equations, in order to correctly account for the presence of a fifth
force. The outlined procedure can easily be generalized to include uncoupled components, for
example baryons. In this case, the corresponding evolution equation for d;, will be fed by ®eg = ®.
This yields an evolution equation for the uncoupled scale factor R,. that is equivalent to the
standard Friedmann equation. In Figure 6 we show the linear density contrast at collapse d.(z.)
for three coupled quintessence models with @ = 0.1 and 5 = 0.05, 0.1, 0.15.

1.71
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Figure 6: Extrapolated linear density contrast at collapse for coupled quintessence models with different
coupling strength 3. For all plots we use a constant o = 0.1. We also depict d. for reference ACDM (dotted,
pink) and EdS (double-dashed, black) models. Image reproduced by permission from [962]; copyright by
APS.

An increase of [ results in an increase of J.. As shown in [962], §.(53) is well described by a
simple quadratic fitting formula,

5e(B) = 1.686(1 + aB?),a = 0.556, (1.6.20)
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valid for small 8 < 0.4 and z. > 5. We recall that a nonlinear analysis beyond the spherical
collapse method can be addressed by means of the time-renormalization-group method, extended
to the case of couple quintessence in [787].

If a coupling between dark energy and neutrinos is present, as described in Sections 1.4.4 and
2.9, bound neutrino structures may form within these models [180]. It was shown in [668] that
their formation will only start after neutrinos become non-relativistic. A nonlinear treatment of the
evolution of neutrino densities is thus only required for very late times, and one may safely neglect
neutrino pressure as compared to their density. The evolution equations (1.6.16) and (1.6.17) can
then also be applied for the nonlinear and linear neutrino density contrast. The extrapolated linear
density at collapse d. for growing neutrino quintessence reflects in all respects the characteristic
features of this model and results in a d. which looks quite different from standard dark-energy
cosmologies. We have plotted the dependence of é. on the collapse redshift z. in Figure 7 for
three values of the coupling. The oscillations seen are the result of the oscillations of the neutrino
mass caused by the coupling to the scalar field: the latter has characteristic oscillations as it
approaches the minimum of the effective potential in which it rolls, given by a combination of
the self-interaction potential U(¢) and the coupling contribution (1 — 3w, )p,. Furthermore, due
to the strong coupling 3, the average value of J. is found to be substantially higher than 1.686,
corresponding to the Einstein de Sitter value, shown in black (double-dashed) in Figure 7. Such an
effect can have a strong impact on structure formation and on CMB [727]. For the strongly coupled
models, corresponding to a low present day neutrino mass m,, (to), the critical density at collapse
is only available for z. < 0.2, 1 for § = —560, —112, respectively. This is again a reflection of
the late transition to the non-relativistic regime. Nonlinear investigations of single lumps beyond
the spherical collapse picture was performed in [963, 179], the latter showing the influence of the
gravitational potentials induced by the neutrino inhomogeneities on the acoustic oscillations in the
baryonic and dark-matter spectra.

growing v, B = -52 ——
growing v, B =-112
growing v, B = -560 e

Figure 7: Extrapolated linear density contrast at collapse §. vs. collapse redshift z. for growing neutrinos
with 8 = —52 (solid, red), 8 = —112 (long-dashed, green) and 8 = —560 (short-dashed, blue). A reference
EdS model (double-dashed. black) is also shown. Image reproduced by permission from [962]; copyright
by APS.

1.6.2.3 Early dark energy

A convenient way to parametrize the presence of a nonnegligible homogeneous dark-energy com-
ponent at early times was presented in [956] and has been illustrated in Section 1.2.1 of the present
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review. If we specify the spherical collapse equations for this case, the nonlinear evolution of the
density contrast follows the evolution equations (1.6.16) and (1.6.17) without the terms related to
the coupling. As before, we assume relativistic components to remain homogeneous. In Figure 8
we show ¢, for two models of early dark energy, namely model I and II, corresponding to the choices
(Qm’o = 0.332, wo = —0.93, QDE,e =2 10_4) and (Qm,o = 0.314, Wy = —0.99, QDE,e =
8 - 10~%) respectively. Results show d.(z. = 5) ~ 1.685 (~ 5-1072%) [368, 962].
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Figure 8: Extrapolated linear density contrast at collapse d. vs. collapse redshift z. for EDE models T
(solid, red) and II (long-dashed, green), as well as ACDM (double-dashed, black). Image reproduced by
permission from [962]; copyright by APS.

1.7 Observational properties of dark energy and modified
gravity

Both scalar field dark-energy models and modifications of gravity can in principle lead to any de-
sired expansion history H(z), or equivalently any evolution of the effective dark-energy equation of
state parameter w(z). For canonical scalar fields, this can be achieved by selecting the appropriate
potential V() along the evolution of the scalar field p(t), as was done, e.g., in [102]. For modified
gravity models, the same procedure can be followed for example for f(R) type models [e.g. 736].
The evolution history on its own can thus not tell us very much about the physical nature of the
mechanism behind the accelerated expansion (although of course a clear measurement showing
that w # —1 would be a sensational discovery). A smoking gun for modifications of gravity can
thus only appear at perturbation level.

In the next subsections we explore how dark energy or modified gravity effects can be detected
through weak lensing and redshift surveys.

1.7.1 General remarks

Quite generally, cosmological observations fall into two categories: geometrical probes and structure
formation probes. While the former provide a measurement of the Hubble function, the latter are
a test of the gravitational theory in an almost Newtonian limit on subhorizon scales. Furthermore,
possible effects on the geodesics of test particles need to be derived: naturally, photons follow null-
geodesics while massive particles, which constitute the cosmic large-scale structure, move along
geodesics for non-relativistic particles.
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In some special cases, modified gravity models predict a strong deviation from the standard
Friedmann equation as in, e.g., DGP, (1.4.74). While the Friedmann equation is not know explicitly
in more general models of massive gravity (cascading gravity or hard mass gravity), similar mod-
ifications are expected to arise and provide characteristic features, [see, e.g., 11, 478]) that could
distinguish these models from other scenarios of modified gravity or with additional dynamical
degrees of freedom.

In general however the most interesting signatures of modified gravity models are to be found
in the perturbation sector. For instance, in DGP, growth functions differ from those in dark-energy
models by a few percent for identical Hubble functions, and for that reason, an observation of both
the Hubble and the growth function gives a handle on constraining the gravitational theory, [592].
The growth function can be estimated both through weak lensing and through galaxy clustering
and redshift distortions.

Concerning the interactions of light with the cosmic large-scale structure, one sees a modified
coupling in general models and a difference between the metric potentials. These effects are present
in the anisotropy pattern of the CMB, as shown in [792], where smaller fluctuations were found on
large angular scales, which can possibly alleviate the tension between the CMB and the ACDM
model on small multipoles where the CMB spectrum acquires smaller amplitudes due to the ISW-
effect on the last-scattering surface, but provides a worse fit to supernova data. An interesting
effect inexplicable in GR is the anticorrelation between the CMB temperature and the density of
galaxies at high redshift due to a sign change in the integrated Sachs—Wolfe effect. Interestingly,
this behavior is very common in modified gravity theories.

A very powerful probe of structure growth is of course weak lensing, but to evaluate the lensing
effect it is important to understand the nonlinear structure formation dynamics as a good part of
the total signal is generated by small structures. Only recently has it been possible to perform
structure formation simulations in modified gravity models, although still without a mechanism
in which GR is recovered on very small scales, necessary to be in accordance with local tests of
gravity.

In contrast, the number density of collapsed objects relies only little on nonlinear physics and
can be used to investigate modified gravity cosmologies. One needs to solve the dynamical equations
for a spherically symmetric matter distribution. Modified gravity theories show the feature of
lowering the collapse threshold for density fluctuations in the large-scale structure, leading to a
higher comoving number density of galaxies and clusters of galaxies. This probe is degenerate with
respect to dark-energy cosmologies, which generically give the same trends.

1.7.2 Observing modified gravity with weak lensing

The magnification matrix is a 2 x 2 matrix that relates the true shape of a galaxy to its image. It
contains two distinct parts: the convergence, defined as the trace of the matrix, modifies the size of
the image, whereas the shear, defined as the symmetric traceless part, distorts the shape of the im-
age. At small scales the shear and the convergence are not independent. They satisfy a consistency
relation, and they contain therefore the same information on matter density perturbations. More
precisely, the shear and the convergence are both related to the sum of the two Bardeen potentials,
® + U, integrated along the photon trajectory. At large scales however, this consistency relation
does not hold anymore. Various relativistic effects contribute to the convergence, see [150]. Some
of these effects are generated along the photon trajectory, whereas others are due to the pertur-
bations of the galaxies redshift. These relativistic effects provide independent information on the
two Bardeen potentials, breaking their degeneracy. The convergence is therefore a useful quantity
that can increase the discriminatory power of weak lensing.

The convergence can be measured through its effect on the galaxy number density, see e.g. [175].
The standard method extracts the magnification from correlations of distant quasars with fore-
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ground clusters, see [804, 657]. Recently, [977, 978] designed a new method that permits to accu-
rately measure auto-correlations of the magnification, as a function of the galaxies redshift. This
method potentially allows measurements of the relativistic effects in the convergence.

1.7.2.1 Magnification matrix

We are interested in computing the magnification matrix Dy in a perturbed Friedmann universe.
The magnification matrix relates the true shape of a galaxy to its image, and describes therefore the
deformations encountered by a light bundle along its trajectory. D, can be computed by solving
Sachs equation, see [775], that governs propagation of light in a generic geometry. The convergence
k and the shear v = 7, + iy are then defined respectively as the trace and the symmetric traceless
part of D

Xs l—k—m -7
Dap = . 1.7.1
o 1+2S< -2 1—"€+W1) ( )

Here zg is the redshift of the source and yg is a time coordinate related to conformal time ng
through xs = no — ns.

We consider a spatially flat (K = 0) Friedmann universe with scalar perturbations. We start
from the usual longitudinal (or Newtonian) gauge where the metric is given by

Guv Az dz” = a® [—(1 4 20)dn® + (1 — 2@)5;; da’ da?] . (1.7.2)

We compute D, at linear order in @ and ¥ and then we extract the shear and the convergence.
We find, see [150, 125]

1 Xs _
Y= 5/ dxixix X @+ w), (1.7.3)
0 S
1 Xs . — Xs d
,{:5/ dxuaa(@+¢)+q>s_/ —X(q>+\p) (1.7.4)
0 XXs 0o XS

1 Xs . .
+ -1 Usg+n-v —/ d <I>+\I!>,
(HSXS )( 5 S X )

where n is the direction of observation and vg is the peculiar velocity of the source. Here we are
making use of the angular spin raising @ and lowering @ operators (see e.g., [560] for a review of
the properties of these operators) defined as

P sX = —sin® 0(9p + i cschd,)(sin™* 0) s X, P sX = —sin"®0(0 —icschd,)(sin0) X,

(1.7.5)

where (X is an arbitrary field of spin s and 6 and ¢ are spherical coordinates.

Eq. (1.7.3) and the first term in Eq. (1.7.4) are the standard contributions of the shear and the
convergence, but expressed here with the full-sky transverse operators

Loy 1 (0 1 2i _

Z P = " (89 cot 60y Ey eap) + Zsmd (398@ cot 989)7 (1.7.6)
1 .z 1 1
? P = ? <8§ + cot 60y + 2 03¢> . (1.7.7)

In the flat-sky approximation, where 6 is very small, % d @ reduces to the 2D Laplacian 92 + 85
and one recovers the standard expression for the convergence. Similarly, the real part of % @? that
corresponds to 7y reduces to 8?3 — 9?2 and the imaginary part that corresponds to vo becomes 9,0, .
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The other terms in Eq. (1.7.4) are relativistic corrections to the convergence, that are negligible
at small scales but may become relevant at large scales. The terms in the first line are intrinsic
corrections, generated respectively by the curvature perturbation at the source position and the
Shapiro time-delay. The terms in the second line are due to the fact that we measure the con-
vergence at a fixed redshift of the source zg rather that at a fixed conformal time 7ng. Since in
a perturbed universe, the observable redshift is itself a perturbed quantity, this transformation
generates additional contribution to the convergence. Those are respectively the Sachs—Wolfe con-
tribution, the Doppler contribution and the integrated Sachs—Wolfe contribution. Note that we
have neglected the contributions at the observer position since they only give rise to a monopole
or dipole term. The dominant correction to the convergence is due to the Doppler term. Therefore
in the following we are interested in comparing its amplitude with the amplitude of the standard
contribution. To that end we define kg; and ke as

Xs —
XS — X
Ket = dy dHD+ ), 1.7.8
¢ /o 2XXs ( ) ( )
1
vel = —1)n-vg. 1.7.9
Rvel (HSXS ) n-vg ( )

1.7.2.2 Observable quantities

The convergence is not directly observable. However it can be measured through the modifications
that it induces on the galaxy number density. Let us introduce the magnification

M:ﬁ’:l—‘r%ﬁ, when  |k|, |y < 1. (1.7.10)
The magnification modifies the size of a source: d€lp = udSlg, where df)g is the true angular size
of the source and df2o is the solid angle measured by the observer, i.e. the size of the image. The
magnification has therefore an impact on the observed galaxy number density. Let us call n(f)df
the number of unlensed galaxies per unit solid angle, at a redshift zg, and with a flux in the range
[f, f + df]. The magnification p modifies the flux measured by the observer, since it modifies the
observed galaxy surface. It affects also the solid angle of observation and hence the number of
galaxies per unit of solid angle. These two effects combine to give a galaxy number overdensity,
see [175, 804]

g D) = (1)

I n(f)
Here « = —N'(> f.)fe/N(f.), where N(> f.) is the number of galaxies brighter than f. and f, is
the flux limit adopted. Hence « is an observable quantity, see e.g. [977, 804]. Recent measurements
of the galaxy number overdensity ) are reported in [804, 657]. The challenge in those measure-

~ 1+ 2(a— 1) (Kt + Fvel) - (1.7.11)

ments is to eliminate intrinsic clustering of galaxies, which induces an overdensity 5§l much larger
than 0. One possibility to separate these two effects is to correlate galaxy number overdensities at
widely separated redshifts. One can then measure (6%(z5)d¢' (z5/)), where zg is the redshift of the
sources and zg < zg is the redshift of the lenses. Another possibility, proposed by [977, 978], is to
use the unique dependence of §# on galaxy flux (i.e., on ) to disentangle §¥ from 651. This method,
combined with precise measurements of the galaxies redshift, allows to measure auto-correlations
of 8%, i.e., <55(25)(55(25r)>, either for zg # zg/ or for zg = zg:. The velocity contribution, ke, has
only an effect on (6 (z5)84(2s:)). The correlations between §¢'(zs/) and vg are indeed completely
negligible and hence the source peculiar velocity does not affect (0% (z5)0¢ (z5/)). In the following
we study in detail the contribution of peculiar motion to (3 (25)d% (25))-

The two components of the convergence kg and kyel (and consequently the galaxy number
overdensity) are functions of redshift zg and direction of observation n. We can therefore determine
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the angular power spectrum

20+1

(0 (25, m)84 (25,0))) = > Cy(z5)Py(n-1'). (1.7.12)

1

The angular power spectrum Cp(zg) contains two contributions, generated respectively by (kstkst)
and (Kyelfivel). The cross-term (kyelkst) 1S negligible since kg contains only Fourier modes with a
wave vector k| perpendicular to the line of sight (see Eq. (1.7.8)), whereas ke selects modes with
wave vector along the line of sight (Eq. (1.7.9)).

So far the derivation has been completely generic. Egs. (1.7.3) and (1.7.4) are valid in any
theory of gravity whose metric can be written as in Eq. (1.7.2). To evaluate the angular power
spectrum we now have to be more specific. In the following we assume GR, with no anisotropic
stress such that ® = ¥. We use the Fourier transform convention

1 . .
v(x,x) = /d‘jk v(k, x)e*. (1.7.13)
(2m)3
The continuity equation, see e.g., [317], allows us to express the peculiar velocity as

G(a)

vk, x) = —i Gla)

k
?6(k7 a), (1.7.14)
where §(k,a) is the density contrast, G(a) is the growth function, and G(a) its derivative with

respect to x. With this we can express the angular power spectrum as

1676% (a5 — 1)2G(ag)?
vel _ H
O Gs) = T et =1)

(H;XS - 1>2/dk KT? (k) gy (kxs)® - (1.7.15)

Here dp is the density contrast at horizon and 7T'(k) is the transfer function defined through, see
e.g., [317]

) @ (1.7.16)

W(k,a) = 10, (K)T(k)
We assume a flat power spectrum, n, = 1, for the primordial potential ¥, (k). We want to compare
this contribution with the standard contribution

2

36m6% (s — 1)2Q2 020+ 1) [ dk X xs—xG(a) .
st _ H m 2
Ci(2s) = Gla=1) / i (k) [/O dx e a ge(kx)| - (1.7.17)

We evaluate Cy°! and C5* in a ACDM universe with Q,, = 0.25, Q4 = 0.75 and dy = 5.7-107°.
We approximate the transfer function with the BBKS formula, see [85]. In Figure 9, we plot C}°!
and C5* for various source redshifts. The amplitude of CZ‘SI and C5* depends on (o — 1)2, which
varies with the redshift of the source, the flux threshold adopted, and the sky coverage of the
experiment. Since (o — 1)? influences Cy°! and C5* in the same way we do not include it in our
plot. Generally, at small redshifts, (o — 1) is smaller than 1 and consequently the amplitude of
both Cy°! and C5' is slightly reduced, whereas at large redshifts (o — 1) tends to be larger than 1
and to amplify Cg’el and C3', see e.g., [978]. However, the general features of the curves and more
importantly the ratio between CZel and C3' are not affected by (o — 1).

Figure 9 shows that Cg’el peaks at rather small ¢, between 30 and 120 depending on the redshift.
This corresponds to rather large angle 8 ~ 90—360 arcmin. This behavior differs from the standard
term (Figure 9) that peaks at large ¢. Therefore, it is important to have large sky surveys to detect
the velocity contribution. The relative importance of C’g’el and C5' depends strongly on the redshift

of the source. At small redshift, zg = 0.2, the velocity contribution is about 4 - 10~> and is hence
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Figure 9: Left: The velocity contribution C}® as a function of £ for various redshifts. Right: The standard
contribution C5* as a function of £ for various redshifts.

larger than the standard contribution which reaches 1076, At redshift zg = 0.5, Cg’el is about 20%
of C*, whereas at redshift zg = 1, it is about 1% of C§*. Then at redshift zg = 1.5 and above,
Cevel becomes very small with respect to Cjt: C}el <10~* C’jt. The enhancement of C}’el at small

2
redshift together with its fast decrease at large redshift are due to the prefactor (H;XS — 1) in

Eq. (1.7.15). Thanks to this enhancement we see that if the magnification can be measured with
an accuracy of 10%, then the velocity contribution is observable up to redshifts z < 0.6. If the
accuracy reaches 1% then the velocity contribution becomes interesting up to redshifts of order 1.

The shear and the standard contribution in the convergence are not independent. One can
easily show that their angular power spectra satisfy the consistency relation, see [449]

C?St _ €(£+ 1) Y

R TECE (1.7.18)

This relation is clearly modified by the velocity contribution. Using that the cross-correlation
between the standard term and the velocity term is negligible, we can write a new consistency
relation that relates the observed convergence C}*" to the shear

0 +1)

Y _ (ktot K,VGI. 1.7.1
G- =T G (1.7.19)

Consequently, if one measures both the shear C; and the magnification C}** as functions of the
redshift, Eq. (1.7.19) allows to extract the peculiar velocity contribution Cf vel  This provides a
new way to measure peculiar velocities of galaxies.

Note that in practice, in weak lensing tomography, the angular power spectrum is computed in
redshift bins and therefore the square bracket in Eq. (1.7.17) has to be integrated over the bin

o XOox=xXGX) .,
/O dxnz(x)/o dx o a(x,)]z(kx), (1.7.20)

where n; is the galaxy density for the i-th bin, convolved with a Gaussian around the mean redshift
of the bin. The integral over X’ is then simplified using Limber approximation, i.e.,

X o ’ N 1 ¢
/0 dxX'F(x")Je(kx') ~ %F (k> O(kx — 1), (1.7.21)
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where Jy is the Bessel function of order ¢. The accuracy of Limber approximation increases with
£. Performing a change of coordinate such that k = £/, Eq. (1.7.17) can be recast in the usual
form used in weak lensing tomography, see e.g., Eq. (1.8.4).

1.7.3 Observing modified gravity with redshift surveys

Wide-deep galaxy redshift surveys have the power to yield information on both H(z) and fy(z)
through measurements of Baryon Acoustic Oscillations (BAO) and redshift-space distortions. In
particular, if gravity is not modified and matter is not interacting other than gravitationally, then
a detection of the expansion rate is directly linked to a unique prediction of the growth rate.
Otherwise galaxy redshift surveys provide a unique and crucial way to make a combined analysis
of H(z) and fy(z) to test gravity. As a wide-deep survey, Euclid allows us to measure H(z)
directly from BAO, but also indirectly through the angular diameter distance D 4(z) (and possibly
distance ratios from weak lensing). Most importantly, Euclid survey enables us to measure the
cosmic growth history using two independent methods: f,(2) from galaxy clustering, and G(z)
from weak lensing. In the following we discuss the estimation of [H(z), Da(z) and f4(2)] from
galaxy clustering.

From the measure of BAO in the matter power spectrum or in the 2-point correlation function
one can infer information on the expansion rate of the universe. In fact, the sound waves imprinted
in the CMB can be also detected in the clustering of galaxies, thereby completing an important
test of our theory of gravitational structure formation.
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Figure 10: Matter power spectrum form measured from SDSS [720]

The BAO in the radial and tangential directions offer a way to measure the Hubble parameter
and angular diameter distance, respectively. In the simplest FLRW universe the basis to define
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distances is the dimensionless, radial, comoving distance:

z dZ/
x(2) = —_— . 1.7.22
&= 35 (17.22)
The dimensionless version of the comoving distance (defined in the previous section by the same
symbol x) is:

E2(z) = QO (1 + 2)* + (1 — 09 exp U Wdé} . (1.7.23)
0 z

The standard cosmological distances are related to x(z) via

c
Da(z) = 5 sin (V= 0(2)) 1.7.24
24) = g ommon (V ) (17.24)
where the luminosity distance, Dy (z), is given by the distance duality:
Dp(2) = (14 2)*Da(2). (1.7.25)

The coupling between D 4(z) and Dy (z) persists in any metric theory of gravity as long as photon
number is conserved (see Section 4.2 for cases in which the duality relation is violated). BAO
yield both D4(z) and H(z) making use of an almost completely linear physics (unlike for example
SN Ia, demanding complex and poorly understood mechanisms of explosions). Furthermore, they
provide the chance of constraining the growth rate through the change in the amplitude of the
power spectrum.

The characteristic scale of the BAO is set by the sound horizon at decoupling. Consequently,
one can attain the angular diameter distance and Hubble parameter separately. This scale along
the line of sight (s)|(z)) measures H(z) through H(z) = cAz/s||(z), while the tangential mode
measures the angular diameter distance D 4(z) = s, /A0(1 + 2).

One can then use the power spectrum to derive predictions on the parameter constraining
power of the survey (see e.g., [46, 418, 938, 945, 308]).

In order to explore the cosmological parameter constraints from a given redshift survey, one
needs to specify the measurement uncertainties of the galaxy power spectrum. In general, the
statistical error on the measurement of the galaxy power spectrum P, (k) at a given wave-number

bin is [359

(359] , , ,

Afg )" 20m) T (1.7.26)
P, Vaurvey k2 AkAp ngPg |

where n, is the mean number density of galaxies, Viurvey is the comoving survey volume of the

galaxy survey, and p is the cosine of the angle between k and the line-of-sight direction p = k-7 k.

In general, the observed galaxy power spectrum is different from the true spectrum, and it
can be reconstructed approximately assuming a reference cosmology (which we consider to be our
fiducial cosmology) as (e.g., [815])

Da(2)7H(2)
Po S krc akr 5 = - P, krc 7kr ) Ps ot » 1.7.2
bs (Kref Ly Kref||> 2) D (22 H (2)ret e (Kxef Ly Kret||s 2) + Pshot (1.7.27)
where
a1
Py(kret s kret), 2) = b(2)? |1+ B(2) 5——5—| X Pratter(k, 2) - (1.7.28)

2 2
krefJ_ + kref”

In Eq. (1.7.27), H(z) and DA(z) are the Hubble parameter and the angular diameter distance,
respectively, and the prefactor (Da(2)2H(2))/(Da(2)*>H (z)ret) encapsulates the geometrical dis-
tortions due to the Alcock—Paczynski effect [815, 81]. Their values in the reference cosmology are
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distinguished by the subscript ‘ref’, while those in the true cosmology have no subscript. £k, and k;
are the wave-numbers across and along the line of sight in the true cosmology, and they are related
to the wave-numbers calculated assuming the reference cosmology by kref1 = ki1 Da(2)/Da(2)ret
and Eyer| = k| H(2)ret/H(2). Pipot is the unknown white shot noise that remains even after the
conventional shot noise of inverse number density has been subtracted [815]. In Eq. (1.7.28), b(z)
is the linear bias factor between galaxy and matter density distributions, f,(z) is the linear growth
rate,® and B(z) = f,(2)/b(z) is the linear redshift-space distortion parameter [485]. The linear
matter power spectrum Ppatter (K, 2) in Eq. (1.7.27) takes the form

87‘(’264]{}0A2 (/{50) G(Z) 2 k e 2,2 2
Pma er = —RT2 =7 - K uto, 1.7.2
wlhod) = et 0 52 2] () < 0o

where G(z) is the usual scale independent linear growth-factor in the absence of massive neutrino
free-streaming (see Eq. (25) in [337]), whose fiducial value in each redshift bin is computed through
numerical integration of the differential equations governing the growth of linear perturbations in
presence of dark energy [588] or employing the approximation of Eq. (1.3.22). T'(k) depends on
matter and baryon densities® (neglecting dark energy at early times), and is computed in each
redshift bin using a Boltzmann code like CAMB® [559] or CMBFAST.

In Eq. (1.7.29) a damping factor e~ *’#*77 has been added, due to redshift uncertainties, where
o, = (0r/0z)o,, r(z) being the comoving distance [940, 815], and assumed that the power spectrum
of primordial curvature perturbations, Pr(k), is

_ KPr(k)

k
AR (k) = T

— A2 (ko) <k0>n , (1.7.30)

where ko = 0.002/Mpc, AZ (ko)|ga = 2.45 x 107 is the dimensionless amplitude of the primordial
curvature perturbations evaluated at a pivot scale kg, and n; is the scalar spectral index [548].

In the limit where the survey volume is much larger than the scale of any features in Pops(k), it
has been shown that the redshift survey Fisher matrix for a given redshift bin can be approximated
as [880]

1k 2
max )1 Pops (k, 1) O1n Pops (K, ) 2rk?dkdp
FLSS —/ / ’ Vg (e, ) —— 8 1.7.31
£ 1 Op; Ip; i (£, 1) 2(2w)3 (1.7.31)

min

where the derivatives are evaluated at the parameter values p; of the fiducial model, and Veg is
the effective volume of the survey:

ngpg(ka,u)

2
—————| Vsurvey 1.7.32
nng(k,u) +1] ey ( )

Vet (K, p1) = {

where the comoving number density ng(z) is assumed to be spatially constant. Due to azimuthal
symmetry around the line of sight, the three-dimensional galaxy redshift power spectrum PObS(E)
depends only on k and u, i.e., is reduced to two dimensions by symmetry [815]. The total Fisher
matrix can be obtained by summing over the redshift bins.

To minimize nonlinear effects, one should restrict wave-numbers to the quasi-linear regime,
e.g., imposing that kuy.x is given by requiring that the variance of matter fluctuations in a sphere
of radius R is, for instance, 0%(R) = 0.25 for R = m/(2kmax). Or one could model the nonlinear
distortions as in [338]. On scales larger than (~ 100h~! Mpc) where we focus our analysis,

4 In presence of massive neutrinos fy depends also on the scale k [501].
5 If we assume that neutrinos have a non-vanishing mass, then the transfer function is also redshift-dependent.
6 http://camb.info/
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nonlinear effects can be represented in fact as a displacement field in Lagrangian space modeled
by an elliptical Gaussian function. Therefore, following [338, 816], to model nonlinear effect we
multiply P(k) by the factor

exp {k2

where 3, and ¥, represent the displacement across and along the line of sight, respectively.
They are related to the growth factor G and to the growth rate f, through ¥, = ¥¢G and
Y = BoG(1 + fy). The value of ¥y is proportional to og. For a reference cosmology where
os = 0.8 [526], we have ¥y = 11 h~! Mpc.

Finally, we note that when actual data are available, the usual way to measure 3 = f,/b is by
fitting the measured galaxy redshift-space correlation function £(o,7) to a model [717]:

2y 2
(1L=p)2?  #%

2 2

} , (1.7.33)

£(o,m) = /OO dv f(v)€(o,m —v/Hy), (1.7.34)

— 00

where f(v) describes the small-scale random motion (usually modeled by a Gaussian that depends
on the galaxy pairwise peculiar velocity dispersion), and (o, 7) is the model accounting for coherent
infall velocities:”

E(o,m) = €o(s)Po(p) + () Pap) + Ea(s) Pa n): (1.7.35)

Py(p) are Legendre polynomials; p = cos6, where 6 denotes the angle between r and 7; &y(s),
&2(s), and &4(s) depend on 8 and the real-space correlation function £(r).

The bias between galaxy and matter distributions can be estimated from either galaxy cluster-
ing, or weak lensing. To determine bias, we can assume that the galaxy density perturbation d, is
related to the matter density perturbation d,,(x) as [371]:

g = bOm (X) + bad2,(x) /2. (1.7.36)
Bias can be derived from galaxy clustering by measuring the galaxy bispectrum:

{0k, Ogks Ogi, ) = (2m)% { P(k1)P(k2) [J(k1,ka)/b+ ba/b?]
+cye.} 6P (ky + ko + k), (1.7.37)

where J is a function that depends on the shape of the triangle formed by (ki, ko, k3) in k space,
but only depends very weakly on cosmology [648, 925].

In general, bias can be measured from weak lensing through the comparison of the shear-shear
and shear-galaxy correlations functions. A combined constraint on bias and the growth factor G(z)
can be derived from weak lensing by comparing the cross-correlations of multiple redshift slices.

Of course, if bias is assumed to be linear (bo = 0) and scale independent, or is parametrized in
some simple way, e.g., with a power law scale dependence, then it is possible to estimate it even
from linear galaxy clustering alone, as we will see in Section 1.8.3.

1.7.4 Cosmological bulk flows

As we have seen, the additional redshift induced by the galaxy peculiar velocity field generates
the redshift distortion in the power spectrum. In this section we discuss a related effect on the

luminosity of the galaxies and on its use to measure the peculiar velocity in large volumes, the
so-called bulk flow.

7 See [420]. £(o,7) is the Fourier transform of Ps(k) = (1 + Bu2)2P.(k) [485].
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In the gravitational instability framework, inhomogeneities in the matter distribution induce
gravitational accelerations g, which result in galaxies having peculiar velocities v that add to the
Hubble flow. In linear theory the peculiar velocity field is proportional to the peculiar acceleration

2 H, -
v(r) = g = T2 o, 0) S0 d (1.7.38)

and the bulk flow of a spherical region is solely determined by the gravitational pull of the dipole
of the external mass distribution. For this reason, bulk flows are reliable indicators to deviations
from homogeneity and isotropy on large scale, should they exist.

Constraints on the power spectrum and growth rate can be obtained by comparing the bulk
flow estimated from the volume-averaged motion of the sphere of radius R:

[ v(x)W(x/R)d*x
Br = 1.7.
R="TWx/R) &x (1.7.39)
with expected variance:
z ol P(KYW(kR)?(k) dk 4
UB,R_ 67’(’2 ( )W( R) ( ) ) (17 0)

where the window function W(x/R) and its Fourier transform W(kR) describe the spatial distri-
bution of the dataset.

Over the years the bulk flows has been estimated from the measured peculiar velocities of a
large variety of objects ranging from galaxies [397, 398, 301, 256, 271, 788] clusters of galaxies
[549, 165, 461] and SN Ia [766]. Conflicting results triggered by the use of error-prone distance
indicators have fueled a long lasting controversy on the amplitude and convergence of the bulk flow
that is still on. For example, the recent claim of a bulk flow of 407 + 81 km s™! within R = 50
h~=1 Mpc [947], inconsistent with expectation from the ACDM model, has been seriously challenged
by the re-analysis of the same data by [694] who found a bulk flow amplitude consistent with ACDM
expectations and from which they were able to set the strongest constraints on modified gravity
models so far. On larger scales, [493] claimed the detection of a dipole anisotropy attributed
to the kinetic SZ decrement in the WMAP temperature map at the position of X-ray galaxy
clusters. When interpreted as a coherent motion, this signal would indicate a gigantic bulk flow
of 1028 + 265 km s~! within R = 528 A~ Mpc. This highly debated result has been seriously
questioned by independent analyses of WMAP data [see, e.g., 699])

The large, homogeneous dataset expected from Euclid has the potential to settle these issues.
The idea is to measure bulk flows in large redshift surveys, based on the apparent, dimming or
brightening of galaxies due to their peculiar motion. The method, originally proposed by [875], has
been recently extended by [693] who propose to estimate the bulk flow by minimizing systematic
variations in galaxy luminosities with respect to a reference luminosity function measured from
the whole survey. It turns out that, if applied to the photo-z catalog expected from Euclid, this
method would be able to detect at 5o significance a bulk flow like the one of [947] over ~ 50
independent spherical volumes at z > 0.2, provided that the systematic magnitude offset over the
corresponding areas in the sky does not exceed the expected random magnitude errors of 0.02—
0.04 mag. Additionally, photo-z or spectral-z could be used to validate or disproof with very large
(> 7o) significance the claimed bulk flow detection of [493] at z = 0.5.

Closely related to the bulk flow is the Local Group peculiar velocity inferred from the observed
CMB dipole [483]

HOfg

VOMB = VLG.R — —5~ Xem. T Bg, (1.7.41)

where vi,g, g is the Local Group velocity resulting from the gravitational pull of all objects in the
sample within the radius R, X¢.m. is the position of the center of mass of the sample and veup is
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the LG velocity inferred from the CMB dipole [121]. The convergence of viq g with the radius
and its alignment with the CMB dipole direction indicates a crossover to homogeneity [793] and
allows to constrain the growth rate by comparing vemp with vig r. The latter can be estimated
from the dipole in the distribution of objects either using a number-weighting scheme if redshifts
are available for all objects of the sample, or using a flux-weighting scheme. In this second case
the fact that both gravitational acceleration and flux are inversely proportional to the distance
allows to compute the dipole from photometric catalogs with no need to measure redshifts. The
drawback is that the information on the convergence scale is lost.

As for the bulk flow case, despite the many measurements of cosmological dipoles using galaxies
[972, 283, 654, 868, 801, 513] there is still no general consensus on the scale of convergence and
even on the convergence itself. Even the recent analyses of measuring the acceleration of the
Local Group from the 2MASS redshift catalogs provided conflicting results. [344] found that the
galaxy dipole seems to converge beyond R = 60 h~! Mpc, whereas [552] find no convergence within
R =120~ Mpc.

Once again, Euclid will be in the position to solve this controversy by measuring the galaxy and
cluster dipoles not only at the LG position and out to very large radii, but also in several indepen-
dent ad truly all-sky spherical samples carved out from the the observed areas with |b| > 20°. In
particular, coupling photometry with photo-z one expects to be able to estimate the convergence
scale of the flux-weighted dipole over about 100 independent spheres of radius 200 2~! Mpc out
to z = 0.5 and, beyond that, to compare number-weighted and flux-weighted dipoles over a larger
number of similar volumes using spectroscopic redshifts.

1.8 Forecasts for Euclid

Here we describe forecasts for the constraints on modified gravity parameters which FEuclid obser-
vations should be able to achieve. We begin with reviewing the relevant works in literature. Then,
after we define our “Euclid model”, i.e., the main specifics of the redshift and weak lensing survey,
we illustrate a number of Euclid forecasts obtained through a Fisher matrix approach.

1.8.1 A review of forecasts for parametrized modified gravity with Eu-
clid

Heavens et al. [429] have used Bayesian evidence to distinguish between models, using the Fisher
matrices for the parameters of interest. This study calculates the ratio of evidences B for a 3D
weak lensing analysis of the full Euclid survey, for a dark-energy model with varying equation of
state, and modified gravity with additionally varying growth parameter . They find that Euclid
can decisively distinguish between, e.g., DGP and dark energy, with |In B| ~ 50. In addition,
they find that it will be possible to distinguish any departure from GR which has a difference in
v greater than ~ 0.03. A phenomenological extension of the DGP model [332, 11] has also been
tested with Euclid. Specifically, [199] found that it will be possible to discriminate between this
modification to gravity from ACDM at the 3o level in a wide range of angular scale, approximately
1000 < ¢ < 4000.

Thomas et al. [886] construct Fisher matrix forecasts for the Euclid weak lensing survey, shown
in Figure 11. The constraints obtained depend on the maximum wavenumber which we are con-
fident in using; £1,.x = 500 is relatively conservative as it probes the linear regime where we can
hope to analytically track the growth of structure; £, = 10000 is more ambitious as it includes
nonlinear power, using the [844] fitting function. This will not be strictly correct, as the fitting
function was determined in a GR context. Note that v is not very sensitive to fy.x, while X,
defined in [41] as ¥ = 1 + Ypa (and where X is defined in Eq. 1.3.28) is measured much more
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Figure 11: Marginalized v—3, forecast for weak lensing only analysis with Euclid. Here ¢ is defined from
¥ =14 ¥pa and X, defined via Eq. 1.3.28, is related to the WL potential. Black contours correspond to
fmax = 5000, demonstrating an error of 0.089(1c0) on X, whereas the red contours correspond to £max = 500
giving an error of 0.034. In both cases, the inner and outer contours are 1o and 20 respectively. GR resides
at [0.55, 0], while DGP resides at [0.68, 0].

accurately in the nonlinear regime.

Amendola et al. [41] find Euclid weak lensing constraints for a more general parameterization
that includes evolution. In particular, 3(z) is investigated by dividing the Euclid weak lensing
survey into three redshift bins with equal numbers of galaxies in each bin, and approximating that
Y is constant within that bin. Since X1, i.e., the value of ¥ in the ¢ = 1 bin (present-day) is
degenerate with the amplitude of matter fluctuations, it is set to unity. The study finds that a
deviation from unit ¥ (i.e., GR) of 3% can be detected in the second redshift bin, and a deviation
of 10% is still detected in the furthest redshift bin.

Beynon et al. [132] make forecasts for modified gravity with Euclid weak lensing including [457]
in interpolating between the linear spectrum predicted by modified gravity, and GR on small scales
as required by Solar System tests. This requires parameters A (a measure of the abruptness of
transitioning between these two regimes), a; (controlling the k-dependence of the transition) and
ay (controlling the z-dependence of the transition).

The forecasts for modified gravity parameters are shown in Figure 12 for the Euclid lensing
data. Even with this larger range of parameters to fit, Euclid provides a measurement of the
growth factor v to within 10%, and also allows some constraint on the a; parameter, probing the
physics of nonlinear collapse in the modified gravity model.

Finally, Song et al. [848] have shown forecasts for measuring ¥ and p using both imaging and
spectroscopic surveys. They combine 20,000 square-degree lensing data (corresponding to [550]
rather than to the updated [551]) with the peculiar velocity dispersion measured from redshift
space distortions in the spectroscopic survey, together with stringent background expansion mea-
surements from the CMB and supernovae. They find that for simple models for the redshift
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Figure 12: Constraints on 7, a1, a2z and A from Euclid, using a DGP fiducial model and 0.4 redshift
bins between 0.3 and 1.5 for the central cosmological parameter values fitting WMAP+BAO+SNe.
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evolution of ¥ and pu, both quantities can be measured to 20% accuracy.

1.8.2 Euclid surveys

The Euclid mission will produce a catalog of up to 100 million galaxy redshifts and an imaging
survey that should allow to estimate the galaxy ellipticity of up to 2 billion galaxy images. Here we
discuss these surveys and fix their main properties into a “Euclid model”, i.e., an approximation
to the real Euclid survey that will be used as reference mission in the following.

Modeling the Redshift Survey.

The main goals of next generation redshift surveys will be to constrain the dark-energy parameters
and to explore models alternative to standard Einstein gravity. For these purposes they will need
to consider very large volumes that encompass z ~ 1, i.e., the epoch at which dark energy started
dominating the energy budget, spanning a range of epochs large enough to provide a sufficient
leverage to discriminate among competing models at different redshifts.

Here we consider a survey covering a large fraction of the extragalactic corresponding to ~
15000 deg? capable to measure a large number of galaxy redshifts out to z ~ 2. A promising
observational strategy is to target Ha emitters at near-infrared wavelengths (which implies z > 0.5)
since they guarantee both relatively dense sampling (the space density of this population is expected
to increase out to z ~ 2) and an efficient method to measure the redshift of the object. The limiting
flux of the survey should be the tradeoff between the requirement of minimizing the shot noise,
the contamination by other lines (chiefly among them the [O11] line), and that of maximizing
the so-called efficiency e, i.e., the fraction of successfully measured redshifts. To minimize shot
noise one should obviously strive for a low flux. Indeed, [389] found that a limiting flux fu, >
1 x 10716 erg cm~2 s=! would be able to balance shot noise and cosmic variance out to z = 1.5.
However, simulated observations of mock Ha galaxy spectra have shown that ¢ ranges between
30% and 60% (depending on the redshift) for a limiting flux fi, > 3 x 10716 erg em =2 s~ [551].
Moreover, contamination from [O11] line drops from 12% to 1% when the limiting flux increases
from 1 x 10716 to 5 x 10716 erg em=2 s71 [389)].

Taking all this into account, in order to reach the top-level science requirement on the number
density of Ha galaxies, the average effective Ha line flux limit from a l-arcsec diameter source
shall be lower than or equal to 3 x 1076 erg cm™2 s~!'. However, a slitless spectroscopic survey
has a success rate in measuring redshifts that is a function of the emission line flux. As such, the
Euclid survey cannot be characterized by a single flux limit, as in conventional slit spectroscopy.

We use the number density of Ha galaxies at a given redshift, n(z), estimated using the latest
empirical data (see Figure 3.2 of [551]), where the values account for redshift — and flux — success
rate, to which we refer as our reference efficiency ..

However, in an attempt to bracket current uncertainties in modeling galaxy surveys, we consider
two further scenarios, one where the efficiency is only the half of £, and one where it is increased
by a factor of 40%. Then we define the following cases:

e Reference case (ref.). Galaxy number density n(z) which include efficiency €, (column ns(z)
in Table 3).

e Pessimistic case (pess.). Galaxy number density n(z) - 0.5, i.e., efficiency is &, - 0.5 (column
n3(z) in Table 3).

e Optimistic case (opt.). Galaxy number density n(z) - 1.4, i.e., efficiency is &, - 1.4 (column
n1(z) in Table 3).

The total number of observed galaxies ranges from 3 - 107 (pess.) to 9 - 107 (opt.). For all
cases we assume that the error on the measured redshift is Az = 0.001(1 + z), independent of the
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limiting flux of the survey.

Table 3: Expected galaxy number densities in units of (h/Mpc)® for Euclid survey. Let us notice that the
galaxy number densities n(z) depend on the fiducial cosmology adopted in the computation of the survey
volume, needed for the conversion from the galaxy numbers dN/dz to n(z).

z n1(z) X107 na(z) x107%  na(z) x1073
0.65-0.75 1.75 1.25 0.63
0.75-0.85 2.68 1.92 0.96
0.85-0.95 2.56 1.83 0.91
0.95-1.05 2.35 1.68 0.84
1.056-1.15 2.12 1.51 0.76
1.15-1.25 1.88 1.35 0.67
1.25-1.35 1.68 1.20 0.60
1.35-1.45 1.40 1.00 0.50
1.45-1.55 1.12 0.80 0.40
1.55-1.65 0.81 0.58 0.29
1.65-1.75 0.53 0.38 0.19
1.75-1.85 0.49 0.35 0.18
1.85-1.95 0.29 0.21 0.10
1.95-2.05 0.16 0.11 0.06

Modeling the weak lensing survey. For the weak lensing survey, we assume again a sky
coverage of 15,000 square degrees. For the number density we use the common parameterization

n(z) = 22 exp(—(2/20)*'?), (1.8.1)

where zg = Zmean/1.412 is the peak of n(z) and zmean the median and typically we assume zmean =
0.9 and a surface density of valid images of n, = 30 per arcmin? [551]). We also assume that the
photometric redshifts give an error of Az = 0.05(1 + z). Other specifications will be presented in
the relevant sections.

1.8.3 Forecasts for the growth rate from the redshift survey

In this section we forecast the constraints that future observations can put on the growth rate
and on a scale-independent bias, employing the Fisher matrix method presented in Section 1.7.3.
We use the representative Euclid survey presented in Section 1.8.2. We assess how well one can
constrain the bias function from the analysis of the power spectrum itself and evaluate the impact
that treating bias as a free parameter has on the estimates of the growth factor. We estimate how
errors depend on the parametrization of the growth factor and on the number and type of degrees
of freedom in the analysis. Finally, we explicitly explore the case of coupling between dark energy
and dark matter and assess the ability of measuring the coupling constant. Our parametrization
is defined as follows. More details can be found in [308].

Equation of state. In order to represent the evolution of the equation of state parameter w, we
use the popular CPL parameterization [229, 584]

w(z) = wo + wq (1.8.2)

z
1+2z°
As a special case we will also consider the case of a constant w. We refer to this as the w-
parametrization.
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Growth rate. Here we assume that the growth rate, f,, is a function of time but not of scale.
As usual, we use the simple prescription [716, 540, 738, 585, 937]

fo =87, (1.8.3)

where Q,,(z) is the matter density in units of the critical density as a function of redshift. A
value v = 0.545 reproduces well the ACDM behavior while departures from this value characterize
different models. Here we explore three different parameterizations of f,:

e f-parameterization. This is in fact a non-parametric model in which the growth rate itself
is modeled as a step-wise function fy(z) = f;, specified in different redshift bins. The errors
are derived on f; in each i-th redshift bin of the survey.

e vy-parameterization. As a second case we assume
fg = ()7 (1.8.4)

where the v(z) function is parametrized as

z
Y(2) =7 +m 112" (1.8.5)
As shown by [969, 372], this parameterization is more accurate than that of Eq. (1.8.3) for
both ACDM and DGP models. Furthermore, this parameterization is especially effective to
distinguish between a wCDM model (i.e., a dark-energy model with a constant equation of
state) that has a negative 71 (—=0.020 < 71 < —0.016) and a DGP model that instead, has
a positive 71 (0.035 < 71 < 0.042). In addition, modified gravity models show a strongly
evolving y(z) [378, 673, 372], in contrast with conventional dark-energy models. As a special
case we also consider v = constant (only when w also is assumed constant), to compare our

results with those of previous works.

e n-parameterization. To explore models in which perturbations grow faster than in the ACDM
case, like in the case of a coupling between dark energy and dark matter [307], we consider
a model in which v is constant and the growth rate varies as

fo=0m(2)"(1+1n), (1.8.6)

where 7 quantifies the strength of the coupling. The example of the coupled quintessence
model worked out by [307] illustrates this point. In that model, the numerical solution for
the growth rate can be fitted by the formula (1.8.6), with n = ¢3%, where 3. is the dark
energy-dark matter coupling constant and best fit values v = 0.56 and ¢ = 2.1. In this
simple case, observational constraints over n can be readily transformed into constraints over

Be-

Reference Cosmological Models. We assume as reference model a “pseudo” ACDM, where
the growth rate values are obtained from Eq. (1.8.3) with v = 0.545 and Q,,(z) is given by
the standard evolution. Then Q,,(z) is completely specified by setting Q,, o = 0.271, Q, = 0,
wy = —0.95, w; = 0. When the corresponding parameterizations are employed, we choose as
fiducial values v = 0 and n = 0, We also assume a primordial slope ns = 0.966 and a present
normalization og = 0.809.

One of the goals of this work is to assess whether the analysis of the power spectrum in redshift-
space can distinguish the fiducial model from alternative cosmologies, characterized by their own
set of parameters (apart from €,, o which is set equal to 0.27 for all of them). The alternative
models that we consider in this work are:
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e DGP model. We consider the flat space case studied in [602]. When we adopt this model
then we set o = 0.663, 71 = 0.041 [372] or v = 0.68 [587] and w = —0.8 when v and w are
assumed constant.

e f(R) model. Here we consider different classes of f(R) models: i) the one proposed in [456],
depending on two parameters, n and A\, which we fix ton = 0.5,1,2 and A = 3. For the model
with n = 2 we assume vy = 0.43, v = —0.2, values that apply quite generally in the limit
of small scales (provided they are still linear, see [378]) or v = 0.4 and w = —0.99. Unless
differently specified, we will always refer to this specific model when we mention comparisons
to a single f(R) model. ii) The model proposed in [864] fixing A = 3 and n = 2, which shows
a very similar behavior to the previous one. iii) The one proposed in [904] fixing A = 1.

e Coupled dark-energy (CDE) model. This is the coupled model proposed by [33, 955]. In
this case we assume 7y = 0.56, n = 0.056 (this value comes from putting 8. = 0.16 as
coupling, which is of the order of the maximal value allowed by CMB constraints) [44]. As
already explained, this model cannot be reproduced by a constant . Forecasts on coupled
quintessence based on [42, 33, 724] are discussed in more detail in Section 1.8.8.

For the fiducial values of the bias parameters in every bin, we assume b(z) = v/1 + z (already
used in [753]) since this function provides a good fit to Ha line galaxies with luminosity Ly, =
10*2 erg=! s7! h=2 modeled by [698] using the semi-analytic GALFORM models of [108]. For the
sake of comparison, we will also consider the case of constant b = 1 corresponding to the rather
unphysical case of a redshift-independent population of unbiased mass tracers.

The fiducial values for 8 are computed through

Foy - @l
B85 (2) = ) bF (1.8.7)

Now we express the growth function G(z) and the redshift distortion parameter 8(z) in terms
of the growth rate f, (see Eqgs. (1.8.8), (1.8.7)). When we compute the derivatives of the spectrum
in the Fisher matrix b(z) and f,(z) are considered as independent parameters in each redshift bin.
In this way we can compute the errors on b (and f;) self consistently by marginalizing over all
other parameters.

Now we are ready to present the main result of the Fisher matrix analysis . We note that in all
tables below we always quote errors at 68% probability level and draw in the plots the probability
regions at 68% and/or 95% (denoted for shortness as 1 and 20 values). Moreover, in all figures, all
the parameters that are not shown have been marginalized over or fixed to a fiducial value when
so indicated.

Results for the f-parameterization. The total number of parameters that enter in the Fisher
matrix analysis is 45: 5 parameters that describe the background cosmology (Qm 0h?, Qp0h?, h,
n, Q) plus 5 z-dependent parameters specified in 8 redshift bins evenly spaced in the range
z = [0.5,2.1]. They are Pys(z), D(z), H(2), f4(2), b(z). However, since we are not interested in
constraining D(z) and H(z), we always project them to the set of parameters they depend on (as
explained in [815]) instead of marginalizing over, so extracting more information on the background
parameters.

The fiducial growth function G(z) in the (i + 1)-th redshift bin is evaluated from a step-wise,
constant growth rate fy(z) as

G(z) = eXp{/Oz fg(z)lcizz} = H (f;;il)f (f:;)hl . (1.8.8)

%
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To obtain the errors on s; and b; we compute the elements of the Fisher matrix and marginalize
over all other parameters. In this case one is able to obtain, self-consistently, the error on the bias
and on the growth factor at different redshifts, as detailed in Table 4. In Figure 13 we show the
contour plots at 68% and 95% of probability for all the pairs s(z;) — b(2;) in several redshift bins
(with b = /1 + z), where z;’s are the central values of the bins. We do not show the ellipses for
all the 14 bins to avoid overcrowding.

Table 4 illustrates one important result: through the analysis of the redshift-space galaxy power
spectrum in a next-generation Euclid-like survey, it will be possible to measure galaxy biasing in
Az = 0.1 redshift bins with less than 1.6% error, provided that the bias function is independent
of scale. We also tested a different choice for the fiducial form of the bias: b(z) = 1 finding that
the precision in measuring the bias as well as the other parameters has a very little dependence on
the b(z) form. Given the robustness of the results on the choice of b(z) in the following we only
consider the b(z) = /1 + z case.

In Figure 14 we show the errors on the growth rate f,; as a function of redshift, overplotted to our
fiducial ACDM (green solid curve). The three sets of error bars are plotted in correspondence of the
14 redshift bins and refer (from left to right) to the Optimistic, Reference and Pessimistic cases,
respectively. The other curves show the expected growth rate in three alternative cosmological
models: flat DGP (red, longdashed curve), CDE (purple, dot-dashed curve) and different f(R)
models (see description in the figure caption). This plot clearly illustrates the ability of next
generation surveys to distinguish between alternative models, even in the less favorable choice of
survey parameters.

The main results can be summarized as follows.

1. The ability of measuring the biasing function is not too sensitive to the characteristic of the
survey (b(z) can be constrained to within 1% in the Optimistic scenario and up to 1.6% in
the Pessimistic one) provided that the bias function is independent of scale. Moreover, we
checked that the precision in measuring the bias has a very little dependence on the b(z)
form.

2. The growth rate f, can be estimated to within 1-2.5% in each bin for the Reference case
survey with no need of estimating the bias function b(z) from some dedicated, independent
analysis using higher order statistics [925] or full-PDF analysis [825].

3. The estimated errors on f, depend weakly on the fiducial model of b(z).

Next, we focus on the ability of determining 7y and 7, in the context of the y-parameterization
and v, 7 in the n-parameterization. In both cases the Fisher matrix elements have been estimated
by expressing the growth factor as

dz'

1.8.9
142’ ( )

z
6(2) = doexp | (1+1) [ 0P
0
where for the v-parameterization we fix n = 0.

o vy-parameterization. We start by considering the case of constant v and w in which we set
v =~ =0.545 and w = w! = —0.95. As we will discuss in the next Section, this simple case
will allow us to cross-check our results with those in the literature. In Figure 16 we show the
marginalized probability regions, at 1 and 2¢ levels, for v and w. The regions with different
shades of green illustrate the Reference case for the survey whereas the blue long-dashed and
the black short-dashed ellipses refer to the Optimistic and Pessimistic cases, respectively.
Errors on v and w are listed in Table 5 together with the corresponding figures of merit
[FoM] defined to be the squared inverse of the Fisher matrix determinant and therefore equal
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Figure 13: Contour plots at 68% and 98% of probability for the pairs s(z;) — b(z;) in 7 redshift bins
(with b = /1 + z). The ellipses are centered on the fiducial values of the growth rate and bias parameters,

computed in the central values of the bins, z;.

Table 4: 1o marginalized errors for the bias and the growth rates in each redshift bin.

z ob bE z ff o,

ref. opt.  pess. ref. opt.  pess.
0.7 0.016 0.015 0.019 130 0.7 0.76 0.011 0.010 0.012
0.8 0.014 0.014 0.017 134 0.8 0.80 0.010 0.009 0.011
0.9 0.014 0.013 0.017 1.38 0.9 0.82 0.009 0.009 0.011
1.0 0.013 0.012 0.016 141 1.0 0.84 0.009 0.008 0.011
1.1 0.013 0.012 0.016 145 1.1 0.86 0.009 0.008 0.011
1.2 0.013 0.012 0.016 148 1.2 0.87 0.009 0.009 0.011
1.3 0.013 0.012 0.016 152 1.3 0.88 0.010 0.009 0.012
1.4 0.013 0.012 0.016 155 14 0.89 0.010 0.009 0.013
1.5 0.013 0.012 0.016 1.58 1.5 091 0.011 0.010 0.014
1.6 0.013 0.012 0.016 161 1.6 091 0.012 0.011 0.016
1.7 0.014 0.013 0.017 1.64 1.7 092 0.014 0.012 0.018
1.8 0.014 0.013 0.018 167 1.8 093 0.014 0.013 0.019
1.9 0.016 0.014 0.021 170 1.9 093 0.017 0.015 0.025
2.0 0.019 0.016 0.028 173 2.0 094 0.023 0.019 0.037
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Figure 14: Expected constraints on the growth rates in each redshift bin. For each z the central error
bars refer to the Reference case while those referring to the Optimistic and Pessimistic case have been
shifted by —0.015 and +0.015 respectively. The growth rates for different models are also plotted: ACDM
(green tight shortdashed curve), flat DGP (red longdashed curve) and a model with coupling between
dark energy and dark matter (purple, dot-dashed curve). The blue curves (shortdashed, dotted and solid)
represent the f(R) model by [456] with n = 0.5,1, 2 respectively. The plot shows that it will be possible
to distinguish these models with next generation data.
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Figure 15: Expected constraints on the growth rates in each redshift bin. For each z the central error
bars refer to the Reference case while those referring to the Optimistic and Pessimistic case have been
shifted by —0.015 and +0.015 respectively. The growth rates for different models are also plotted: ACDM
(green tight shortdashed curve), flat DGP (red longdashed curve) and a model with coupling between dark
energy and dark matter (purple, dot-dashed curve). Here we plot again the f(R) model by [456] with
n = 2 (blue shortdashed curve) together with the model by [864] (cyan solid curve) and the one by [904]
(black dotted curve). Also in this case it will be possible to distinguish these models with next generation
data.
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to the inverse of the product of the errors in the pivot point, see [21]. Contours are centered
on the fiducial model. The blue triangle and the blue square represent the flat DGP and
the f(R) models’ predictions, respectively. It is clear that, in the case of constant v and
w, the measurement of the growth rate in a Euclid-like survey will allow us to discriminate
among these models. These results have been obtained by fixing the curvature to its fiducial
value 2 = 0. If instead, we consider curvature as a free parameter and marginalize over, the
errors on 7y and w increase significantly, as shown in Table 6, and yet the precision is good
enough to distinguish the different models. For completeness, we also computed the fully
marginalized errors over the other cosmological parameters for the reference survey, given in
Table 7.

As a second step we considered the case in which v and w evolve with redshift according to
Egs. (1.8.5) and (1.8.2) and then we marginalized over the parameters 1, w; and €. The
marginalized probability contours are shown in Figure 17 in which we have shown the three
survey setups in three different panels to avoid overcrowding. Dashed contours refer to the
z-dependent parameterizations while red, continuous contours refer to the case of constant ~y
and w obtained after marginalizing over 2. Allowing for time dependency increases the size
of the confidence ellipses since the Fisher matrix analysis now accounts for the additional
uncertainties in the extra-parameters y; and w; marginalized error values are in columns
O ymarg.1> Twmarg.s Of Table 8. The uncertainty ellipses are now larger and show that DGP and
fiducial models could be distinguished at > 20 level only if the redshift survey parameter
will be more favorable than in the Reference case.

We have also projected the marginalized ellipses for the parameters vy and v; and calcu-
lated their marginalized errors and figures of merit, which are reported in Table 9. The
corresponding uncertainties contours are shown in the right panel of Figure 16. Once again
we overplot the expected values in the f(R) and DGP scenarios to stress the fact that one
is expected to be able to distinguish among competing models, irrespective on the survey’s
precise characteristics.

n-parameterization.

We have repeated the same analysis as for the v-parameterization taking into account the
possibility of coupling between DE and DM, i.e., we have modeled the growth factor according
to Eq. (1.8.6) and the dark-energy equation of state as in Eq. (1.8.2) and marginalized over
all parameters, including €. The marginalized errors are shown in columns o, ... ., Twors o
of Table 8 and the significance contours are shown in the three panels of Figure 18 which is
analogous to Figure 17. Even if the ellipses are now larger we note that errors are still small
enough to distinguish the fiducial model from the f(R) and DGP scenarios at > 1o and > 20
level respectively.

Marginalizing over all other parameters we can compute the uncertainties in the v and n
parameters, as listed in Table 10. The relative confidence ellipses are shown in the left
panel of Figure 19. This plot shows that next generation Euclid-like surveys will be able
to distinguish the reference model with no coupling (central, red dot) to the CDE model
proposed by [44] (white square) only at the 1—1.50 level.

Finally, in order to explore the dependence on the number of parameters and to compare our

results to previous works, we also draw the confidence ellipses for wgy, wy with three different
methods: 1) fixing 79,71 and Qi to their fiducial values and marginalizing over all the other
parameters; ii) fixing only o and ~1; iii) marginalizing over all parameters but wg, w;. As one can
see in Figure 20 and Table 11 this progressive increase in the number of marginalized parameters
reflects in a widening of the ellipses with a consequent decrease in the figures of merit. These
results are in agreement with those of other authors (e.g., [945]).
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Figure 16: ~-parameterization. Left panel: 1 and 20 marginalized probability regions for constant -y
and w: the green (shaded) regions are relative to the Reference case, the blue long-dashed ellipses to the
Optimistic case, while the black short-dashed ellipses are the probability regions for the Pessimistic case.
The red dot marks the fiducial model; two alternative models are also indicated for comparison. Right
panel: 1 and 20 marginalized probability regions for the parameters 7o and 71, relative to the Reference
case (shaded yellow regions), to the Optimistic case (green long-dashed ellipses), and to the Pessimistic
case (black dotted ellipses). Red dots represent the fiducial model, blue squares mark the DGP while
triangles stand for the f(R) model. Then, in the case of y-parameterization, one could distinguish these
three models (at 95% probability).

Table 5: Numerical values for 1o constraints on parameters in Figure 16 and figures of merit. Here we
have fixed Qf to its fiducial value, Q2 = 0.

case Ox Ow FoM
b=+v1+2z ref. 002 0.017 3052
with opt. 0.02 0.016 3509

Q. fixed pess. 0.026 0.02 2106

Table 6: Numerical values for 1o constraints on parameters v and w (assumed constant), relative to the
red ellipses in Figures 17, 18 and figures of merit. Here we have marginalized over Q.

bias case On FoM

ref. 0.03 0.04 1342
b=+v1+2 opt. 0.03 0.03 1589
pess. 0.04 0.05 864

Table 7: Numerical values for marginalized 1o constraints on cosmological parameters using constant =y
and w.

case Ohp 0Q,, h2 OQLh2 oQy On, Oog

b=+1+2z ref. 0.007 0.002 0.0004 0.008 0.03 0.006
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Figure 17: ~-parameterization. 1 and 20 marginalized probability regions obtained assuming constant
~v and w (red solid curves) or assuming the parameterizations (1.8.5) and (1.8.2) and marginalizing over
71 and wi (black dashed curves); marginalized error values are in columns o.,,,., 15 Twmarg,1 Of Table 8.
Yellow dots represent the fiducial model, the triangles a f(R) model and the squares mark the flat DGP.

Table 8: 1o marginalized errors for parameters v and w expressed through v and n parameterizations.
Columns 70, marg1, Wo,marg1 refer to marginalization over 1, w1 (Figure 17) while columns 4o, marg2, Wo,marg2
refer to marginalization over n, w1 (Figure 18).

bias case O"Ymarg,l mearg,l FoM ‘ O—’Ymarg,Z mearg,2 FoM

ref. 0.15 0.07 97 0.07 0.07 216
b=+v1+2 opt. 0.14 0.06 112 0.07 0.06 249
pess. 0.18 0.09 66 0.09 0.09 147

Table 9: Numerical values for 1o constraints on parameters in right panel of Figure 16 and figures of
merit.

bias case o0, 0y FoM

ref. 0.15 04 87
b=+v1+4+2z opt. 014 0.36 102
pess. 0.18 0.48 58

Table 10: Numerical values for 1o constraints on parameters in Figure 19 and figures of merit.

bias case Oy oy FoM

ref. 0.07 0.06 554
b=+v14+2z opt. 0.07 0.06 650
pess. 0.09 0.08 362
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Figure 18: n-parameterization. 1 and 20 marginalized probability regions obtained assuming constant
~ and w (red solid curves) or assuming the parameterizations (1.8.6) and (1.8.2) and marginalizing over
n and w; (black dashed curves); marginalized error values are in columns ow,,,., », Twmare.2 Of Table 9.
Yellow dots represent the fiducial model, the triangles stand for a f(R) model and the squares mark the
flat DGP.

The results obtained in this section can be summarized as follows.

1. If both v and w are assumed to be constant and setting 2 = 0, then a redshift survey
described by our Reference case will be able to constrain these parameters to within 4% and
2%, respectively.

2. Marginalizing over Q; degrades these constraints to 5.3% and 4% respectively.

3. If w and v are considered redshift-dependent and parametrized according to Egs. (1.8.5)
and (1.8.2) then the errors on 7y and wg obtained after marginalizing over 7; and w; increase
by a factor ~ 7, 5. However, with this precision we will be able to distinguish the fiducial
model from the DGP and f(R) scenarios with more than 20 and 1o significance, respectively.

4. The ability to discriminate these models with a significance above 20 is confirmed by the
confidence contours drawn in the v-v; plane, obtained after marginalizing over all other
parameters.

5. If we allow for a coupling between dark matter and dark energy, and we marginalize over n
rather than over 71, then the errors on wq are almost identical to those obtained in the case
of the y-parameterization, while the errors on 7y decrease significantly.

However, our ability in separating the fiducial model from the CDE model is significantly
hampered: the confidence contours plotted in the «-n plane show that discrimination can
only be performed wit 1-1.50 significance. Yet, this is still a remarkable improvement
over the present situation, as can be appreciated from Figure 19 where we compare the
constraints expected by next generation data to the present ones. Moreover, the Reference
survey will be able to constrain the parameter n to within 0.06. Reminding that we can write
n = 2.182 [307], this means that the coupling parameter 3. between dark energy and dark
matter can be constrained to within 0.14, solely employing the growth rate information. This
is comparable to existing constraints from the CMB but is complementary since obviously
it is obtained at much smaller redshifts. A variable coupling could therefore be detected by
comparing the redshift survey results with the CMB ones.
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Figure 19: n-parameterization. Left panel: 1 and 20 marginalized probability regions for the parameters
~v and 1 in Eq. (1.8.6) relative to the reference case (shaded blue regions), to the optimistic case (yellow
long-dashed ellipses) and to the pessimistic case (black short-dashed ellipses). The red dot marks the
fiducial model while the square represents the coupling model. Right panel: present constraints on v and
n computed through a full likelihood method (here the red dot marks the likelihood peak) [307].

Table 11: 1o marginalized errors for the parameters wo and wi, obtained with three different methods
(reference case, see Figure 20).

Ow, Ow, FoM

Y0, 71, (4 fixed 0.05 0.16 430
Y0, 71 fixed 0.06 0.26 148
marginalization over all other parameters 0.07 0.3 87

It is worth pointing out that, whenever we have performed statistical tests similar to those
already discussed by other authors in the context of a Euclid-like survey, we did find consistent
results. Examples of this are the values of FoM and errors for wg, wy, similar to those in [945, 614]
and the errors on constant v and w [614]. However, let us notice that all these values strictly
depend on the parametrizations adopted and on the numbers of parameters fixed or marginalized
over (see, e.g., [753]).

1.8.4 Weak lensing non-parametric measurement of expansion and growth
rate

In this section we apply power spectrum tomography [448] to the Euclid weak lensing survey
without using any parameterization of the Hubble parameter H(z) as well as the growth function
G(z). Instead, we add the fiducial values of those functions at the center of some redshift bins of our
choice to the list of cosmological parameters. Using the Fisher matrix formalism, we can forecast
the constraints that future surveys can put on H(z) and G(z). Although such a non-parametric
approach is quite common for as concerns the equation-of-state ratio w(z) in supernovae surveys
[see, e.g., 22] and also in redshift surveys [815], it has not been investigated for weak lensing surveys.
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Figure 20: Errors on the equation of state. 1 and 20 marginalized probability regions for the parameters
wo and w1, relative to the reference case and bias b = \/(1 + z). The blue dashed ellipses are obtained
fixing 70, y1 and Qx = 0 to their fiducial values and marginalizing over all the other parameters; for the red
shaded ellipses instead, we also marginalize over 2, = 0 but we fix v0,v1. Finally, the black dotted ellipses
are obtained marginalizing over all parameters but wo and wi. The progressive increase in the number
of parameters reflects in a widening of the ellipses with a consequent decrease in the figures of merit (see
Table 11).

The Fisher matrix is given by [458]

(26 + 1)A€ 6Pij (f) 1 6Pkm(£) 1
F.3 = C- C -, 1.8.10
B8 fsky zg: 2 529& ik apﬁ mi ( )
where fqy is the observed fraction of the sky, C' is the covariance matrix, P(¢) is the convergence
power spectrum and p is the vector of the parameters defining our cosmological model. Repeated
indices are being summed over from 1 to N, the number of redshift bins. The covariance matrix
is defined as (no summation over j)

Cik = Pjk + G (1.8.11)

where iy is the intrinsic galaxy shear and n; is the fraction of galaxies per steradian belonging

to the j-th redshift bin:
180\* [
n; = 3600 () ’I’Lg/ n;(z)dz (1.8.12)
0

™

where ng is the galaxy density per arc minute and n;(z) the galaxy density for the j-th bin,
convolved with a gaussian around Z;, the center of that bin, with a width of o,(1 + 2;) in order to
account for errors in the redshift measurement.

For the matter power spectrum we use the fitting formulae from [337] and for its nonlinear cor-
rections the results from [844]. Note that this is where the growth function enters. The convergence
power spectrum for the i-th and j-th bin can then be written as

Py;(0) = 9110 /Ooo Wi(z)Wj(vin)rJi )gz)Qm(z) Ps., (Wiz)) dz. (1.8.13)
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Here we make use of the window function

i(2) = ooi —M n;|r(2
Wi = [ g |1 g mb (1:58.14)

(with r(z) being the comoving distance) and the dimensionless Hubble parameter

3(1+w(2)) dé}
1+2 '

z

z
E?(2) =001+ 23 + (1 - QD) exp [/ (1.8.15)
0
For the equation-of-state ratio, finally, we use the usual CPL parameterization.
We determine N intervals in redshift space such that each interval contains the same amount
of galaxies. For this we use the common parameterization

n(z) = 2% exp(—(z/2)%/?), (1.8.16)

where 2o = Zmean/1.412 is the peak of n(z) and zpean the median. Now we can define 2; as the
center of the i-th redshift bin and add h; = log (H(2;)/Hy) as well as g; = log G(2;) to the list of
cosmological parameters. The Hubble parameter and the growth function now become functions
of the h; and g; respectively:

H(Z;Q;?),wo,wl) — H(z;h1,...,hN) (1.8.17)
G(z00,7) = G(zi 91, -, 9n) (1.8.18)

This is being done by linearly interpolating the functions through their supporting points, e.g.,
(2i,exp(h;)) for H(z). Any function that depends on either H(z) or G(z) hence becomes a function
of the h; and g; as well.

Table 12: Values used in our computation. The values of the fiducial model (WMAP7, on the left) and
the survey parameters (on the right).

wm | 0.1341
w 0.02258
O Sty 0575
ne | 0.963 jmean 8'35
Q,, | 0.266 z '
1 Ng 30

ZO 0 Yint 0.22

! Cino 5-10°
~y 0.547
Yopn | 0 Alogo ¢ | 0.02
os | 0.801

The values for our fiducial model (taken from WMAP 7-year data [526]) and the survey pa-
rameters that we chose for our computation can be found in Table 12.

As for the sum in Eq. (1.8.10), we generally found that with a realistic upper limit of £ax =
5-10% and a step size of Algl = 0.2 we get the best result in terms of a figure of merit (FoM),
that we defined as

FoM =Y "o;>. (1.8.19)

Note that this is a fundamentally different FoM than the one defined by the Dark Energy Task
Force. Our definition allows for a single large error without influencing the FoM significantly and
should stay almost constant after dividing a bin arbitrarily in two bins, assuming the error scales
roughly as the inverse of the root of the number of galaxies in a given bin.
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Figure 21: Error bars on the Hubble parameter H(z) with five redshift bins. The exact height of the
error bars respectively are (0.23,0.072,0.089, 0.064, 0.76).

We first did the computation with just binning H(z) and using the common fit for the growth
function slope [937]
dlog G(z)

=0 v 1.8.2
dloga m(2)7, (1.8.20)

yielding the result in Figure 21. Binning both H(z) and G(z) and marginalizing over the h;s yields
the plot for G(z) seen in Figure 22.

Notice that here we assumed no prior information. Of course one could improve the FoM by
taking into account some external constraints due to other experiments.

1.8.5 Testing the nonlinear corrections for weak lensing forecasts

In order to fully exploit next generation weak lensing survey potentialities, accurate knowledge of
nonlinear power spectra up to ~ 1% is needed [465, 469]. However, such precision goes beyond the
claimed +3% accuracy of the popular HALOFIT code [844].

[651] showed that, using HALOFIT for non-ACDM models, requires suitable corrections. In spite
of that, HALOFIT has been often used to calculate the spectra of models with non-constant DE state
parameter w(z). This procedure was dictated by the lack of appropriate extensions of HALOFIT to
non-ACDM cosmologies.

In this paragraph we quantify the effects of using the HALOFIT code instead of N-body outputs
for nonlinear corrections for DE spectra, when the nature of DE is investigated through weak
lensing surveys. Using a Fisher-matrix approach, we evaluate the discrepancies in error forecasts
for wg, w, and €, and compare the related confidence ellipses. See [215] for further details.

The weak lensing survey is as specified in Section 1.8.2. Tests are performed assuming three
different fiducial cosmologies: ACDM model (wy = —1, w, = 0) and two dynamical DE models,
still consistent with the WMAP+BAO+SN combination [526] at 95% C.L. They will be dubbed
M1 (wo = —0.67, w, = 2.28) and M3 (wg = —1.18, w, = 0.89). In this way we explore the
dependence of our results on the assumed fiducial model. For the other parameters we adopt the
fiducial cosmology of Secton 1.8.2.

The derivatives to calculate the Fisher matrix are evaluated by extracting the power spectra
from the N-body simulations of models close to the fiducial ones, obtained by considering parameter
increments +5%. For the ACDM case, two different initial seeds were also considered, to test the
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Figure 22: Error bars on the growth function G(z) with three redshift bins while marginalizing over the
h;s. The exact height of the error bars respectively are (0.029,0.033,0.25).

dependence on initial conditions, finding that Fisher matrix results are almost insensitive to it.
For the other fiducial models, only one seed is used.

N-body simulations are performed by using a modified version of PKDGRAV [859] able to handle
any DE state equation w(a), with N3 = 2563 particles in a box with side L = 256 A~ Mpc.
Transfer functions generated using the CAMB package are employed to create initial conditions,
with a modified version of the PM software by [510], also able to handle suitable parameterizations
of DE.

Matter power spectra are obtained by performing a FFT (Fast Fourier Transform) of the matter
density fields, computed from the particles distribution through a Cloud-in-Cell algorithm, by using
a regular grid with N; = 2048. This allows us to obtain nonlinear spectra in a large k-interval.
In particular, our resolution allows to work out spectra up to k ~ 10h Mpc~!. However, for
k > 2-3h Mpc ™! neglecting baryon physics is no longer accurate [481, 774, 149, 976, 426]. For
this reason, we consider WL spectra only up to £yax = 2000.

Particular attention has to be paid to matter power spectra normalizations. In fact, we found
that, normalizing all models to the same linear og(z = 0), the shear derivatives with respect to
wg, wg or {2, were largely dominated by the normalization shift at z = 0, og and og,,; values
being quite different and the shift itself depending on wq, w, and 2,,. This would confuse the z
dependence of the growth factor, through the observational z-range. This normalization problem
was not previously met in analogous tests with the Fisher matrix, as HALOFIT does not directly
depend on the DE state equation.

As a matter of fact, one should keep in mind that, observing the galaxy distribution with future
surveys, one can effectively measure og ,;, and not its linear counterpart. For these reasons, we
choose to normalize matter power spectra to og ., assuming to know it with high precision.

In Figures 23 we show the confidence ellipses, when the fiducial model is ACDM, in the cases
of 3 or 5 bins and with £, = 2000. Since the discrepancy between different seeds are small,
discrepancies between HALOFIT and simulations are truly indicating an underestimate of errors in
the HALOFIT case.

As expected, the error on 2, estimate is not affected by the passage from simulations to
HALOFIT, since we are dealing with ACDM models only. On the contrary, using HALOFIT leads to
underestimates of the errors on wy and w,, by a substantial 30 —40% (see [215] for further details).
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Figure 23: Likelihood contours, for 65% and 95% C.L., calculated including signals up to £ ~ 2000 for
the ACDM fiducial. Here simulations and HALOFIT yield significantly different outputs.
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Figure 24: On the left (right) panel, 1- and 2-0 contours for the M1 (M3) model. The two fiducial models
exhibit quite different behaviors.

This confirms that, when considering models different from ACDM, nonlinear correction ob-
tained through HALOFIT may be misleading. This is true even when the fiducial model is ACDM
itself and we just consider mild deviations of w from —1.

Figure 24 then show the results in the wgy-w, plane, when the fiducial models are M1 or M3.
It is evident that the two cases are quite different. In the M1 case, we see just quite a mild shift,
even if they are O (10%) on error predictions. In the M3 case, errors estimated through HALOFIT
exceed simulation errors by a substantial factor. Altogether, this is a case when estimates based
on HALOFIT are not trustworthy.

The effect of baryon physics is another nonlinear correction to be considered. We note that
the details of a study on the impact of baryon physics on the power spectrum and the parameter
estimation can be found in [813]

1.8.6 Forecasts for the dark-energy sound speed

As we have seen in Section 1.3.1, when dark energy clusters, the standard sub-horizon Poisson
equation that links matter fluctuations to the gravitational potential is modified and @ # 1. The
deviation from unity will depend on the degree of DE clustering and therefore on the sound speed
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cs. In this subsection we try to forecast the constraints that Euclid can put on a constant cs by
measuring ) both via weak lensing and via redshift clustering. Here we assume standard Einstein
gravity and zero anisotropic stress (and therefore we have ¥ = @) and we allow ¢, to assume
different values in the range 0—1.

Generically, while dealing with a non-zero sound speed, we have to worry about the sound
horizon kg, = aH/cs, which characterizes the growth of the perturbations; then we have at least
three regimes with different behavior of the perturbations:

1. perturbations larger than the causal horizon (where perturbations are not causally connected
and their growth is suppressed),

2. perturbations smaller than the causal horizon but larger than the sound horizon, k < aH/c
(this is the only regime where perturbations are free to grow because the velocity dispersion,
or equivalently the pressure perturbation, is smaller than the gravitational attraction),

3. perturbations smaller than the sound horizon, k > aH/c, (here perturbations stop growing
because the pressure perturbation is larger than the gravitational attraction).

As we have set the anisotropic stress to zero, the perturbations are fully described by Q. The
main problem is therefore to find an explicit expression that shows how @) depends on ¢,. [785] have
provided the following explicit approximate expression for @ (k, a) which captures the behavior for
both super- and sub-horizon scales:

1—Qumo (T+w)a™3v

kya) =1+ .
Q( a) QM,O 1— 3w+ %V(Q)Q

(1.8.21)

Here v(a)? = k*ca/ (Qur,0H3) which it is defined through ¢,k = vaH so that v counts how deep
a mode is inside the sound horizon.

Eq. (1.8.21) depends substantially on the value of the sound speed or, to put it differently, on
the scale considered. For scales larger than the sound horizon (v & 0), Eq. (1.8.21) scales as a=3%
and for Q,, o = 0.25 and w = —0.8 we have that

Q—-1~ 3 24~ 0.18024 | (1.8.22)
17
This is not a negligible deviation today, but it decreases rapidly as we move into the past, as the
dark energy becomes less important.® As a scale enters the sound horizon, @ — 1 grows with one
power of the scale factor slower (since dpg stops growing), suppressing the final deviation roughly
by the ratio of horizon size to the scale of interest (as now v? > 1). In the observable range,
(k/Ho)? ~ 102—10%. Therefore, if ¢, ~ 1, @ — 1 and the dependence on c; is lost. This shows
that @ is sensitive to ¢, only for small values, ¢2 < 1072
We can characterize the dependence of @ on the main perturbation parameter ¢? by looking at
its derivative, a key quantity for Fisher matrix forecasts:
dlogQ r Q-1

dloge2 ~ (1+z) Q (1.823)

where z = 2v(a)?/(1 — 3w) ~ 0.2v(a)? (with the last expression being for w = —0.8). For the

values we are interested in here, this derivative has a peak at the present epoch at the sound
horizon, i.e., for ¢s &~ Hy/k, which in the observable range of k is ¢s &~ .01 — .001, and declines
rapidly for larger c¢;,. This means that the sensitivity of @) to the sound speed can be boosted by
several orders of magnitude as the sound speed is decreased.

There are several observables that depend on Q:

8 For this reason, early dark-energy models can have a much stronger impact.
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e The growth of matter perturbations

There are two ways to influence the growth factor: firstly at background level, with a dif-
ferent Hubble expansion. Secondly at perturbation level: if dark energy clusters then the
gravitational potential changes because of the Poisson equation, and this will also affect the
growth rate of dark matter. All these effects can be included in the growth index ~ and we
therefore expect that v is a function of w and ¢ (or equivalently of w and Q).

The growth index depends on dark-energy perturbations (through Q) as [785]
3(1-w—-A(Q))

= 1.8.24
g F 6w ( )
where 0-1
AQ) = —2——. 1.8.25
@=1"aw (18.25)
Clearly here, the key quantity is the derivative of the growth factor with respect to the sound
speed:
dlog G “ Oy “0Q a“
——d —d —1)da. 1.8.26
dln 2 > a 0C2 “e a 0C2 aO(/a0 (@=1)da ( )

From the above equation we also notice that the derivative of the growth factor does not
depend on @ — 1 like the derivative @, but on Q — Q) as it is an integral (being Qo the value
of @ today). The growth factor is thus not directly probing the deviation of @ from unity,
but rather how @ evolves over time, see [786] for more details.

e Redshift space distortions

The distortion induced by redshift can be expressed in linear theory by the 3 factor, related
to the bias factor and the growth rate via:

Qi (Z)“/(k‘vz)
b(z) '

The derivative of the redshift distortion parameter with respect to the sound speed is:

Bz, k) = (1.8.27)

dlog (1—|—,6,u2) B 3 Bu? .
dlog c2 775_67“1‘5‘5,&21—1-%(@71)' (1.8.28)

We see that the behavior versus ¢? is similar to the one for the @ derivative, so the same

discussion applies. Once again, the effect is maximized for small ¢s. The S derivative is
comparable to that of G at z = 0 but becomes more important at low redshifts.

e Shape of the dark matter power spectrum

Quantifying the impact of the sound speed on the matter power spectrum is quite hard as
we need to run Boltzmann codes (such as CAMB, [559]) in order to get the full impact of
dark-energy perturbations into the matter power spectrum. [786] proceeded in two ways:
first using the CAMB output and then considering the analytic expression from [337] (which
does not include dark energy perturbations, i.e., does not include cy).

They find that the impact of the derivative of the matter power spectrum with respect
the sound speed on the final errors is only relevant if high values of ¢? are considered; by
decreasing the sound speed, the results are less and less affected. The reason is that for low
values of the sound speed other parameters, like the growth factor, start to be the dominant

source of information on 2.
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Impact on weak lensing. Now it is possible to investigate the response of weak lensing (WL)
to the dark-energy parameters. Proceeding with a Fisher matrix as in [41], the main difference here
being that the parameter @ has an explicit form. Since @ depends on w and c2, we can forecast
the precision with which those parameters can be extracted. We can also try to trace where the
constraints come from. For a vanishing anisotropic stress the WL potential becomes:

2
k(9 + W) = —2Q3HOQMAM (1.8.29)
a
which can be written, in linear perturbation theory as:
k2 (® + W) = —3H (a)® a®Q (a, k) Qs (a) G (a, k) A (k) . (1.8.30)

Hence, the lensing potential contains three conceptually different contributions from the dark-
energy perturbations:

e The direct contribution of the perturbations to the gravitational potential through the factor

Q.

e The impact of the dark-energy perturbations on the growth rate of the dark matter pertur-
bations, affecting the time dependence of Ay, through G (a, k).

e A change in the shape of the matter power spectrum P(k), corresponding to the dark energy
induced k dependence of Ayy.

We use the representative Euclid survey presented in Section 1.8.2 and we extend our survey up to
three different redshifts: zy,.x = 2,3,4. We choose different values of cg and wg = —0.8 in order to
maximize the impact on @Q: values closer to —1 reduce the effect and therefore increase the errors
on cs.

In Figure 25 we report the 1 — o confidence region for wo,c? for two different values of the
sound speed and zyay. For high value of the sound speed (c2 = 1) we find o(wp) = 0.0195 and the
relative error for the sound speed is o(c?)/c? = 2615. As expected, WL is totally insensitive to
the clustering properties of quintessence dark-energy models when the sound speed is equal to 1.
The presence of dark-energy perturbations leaves a w and ¢? dependent signature in the evolution
of the gravitational potentials through Apg/A,, and, as already mentioned, the increase of the 2
enhances the suppression of dark-energy perturbations which brings @ — 1.

Once we decrease the sound speed then dark-energy perturbations are free to grow at smaller
scales. In Figure 25 the confidence region for wy, ¢ for ¢ = 107 is shown; we find o (wg) = 0.0286,
o(c?)/c2 = 0.132; in the last case the error on the measurement of the sound speed is reduced to
the 70% of the total signal.

Impact on galaxy power spectrum. We now explore a second probe of clustering, the galaxy
power spectrum. The procedure is the same outlined in Section 1.7.3. We use the representative
Euclid survey presented in Section 1.8.2. Here too we also consider in addition possible extended
surveys to zZmax = 2.5 and zpax = 4.

In Figure 26 we report the confidence region for wg,c? for two different values of the sound
speed and zyay. For high values of the sound speed (c2 = 1) we find, for our benchmark survey:
o(wp) = 0.0133, and o(c?)/c2 = 50.05. Here again we find that galaxy power spectrum is not
sensitive to the clustering properties of dark energy when the sound speed is of order unity. If we
decrease the sound speed down to ¢Z = 1075 then the errors are o(wp) = 0.0125, o(c?)/c? = 0.118.

In conclusion, as perhaps expected, we find that dark-energy perturbations have a very small
effect on dark matter clustering unless the sound speed is extremely small, ¢, < 0.01. Let us remind
that in order to boost the observable effect, we always assumed w = —0.8; for values closer to —1
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Figure 25: Confidence region at 68% for three different values of zmax = 2.5,3.5,4, red solid, green
long-dashed and blue dashed contour, respectively. The left panel shows the confidence region when the
sound speed is ¢2 = 1; the right panel with the sound speed ¢2 = 107°. The equation of state parameter
is for both cases wg = —0.8.
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Figure 26: Confidence region at 68% for three different values of zmax = 2.5,3.5,4, red solid, green
long-dashed and blue dashed contour, respectively. The left panel shows the confidence region when the
sound speed is ¢2 = 1; the right panel with the sound speed ¢2 = 107°. The equation of state parameter
is for both cases wg = —0.8.
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the sensitivity to ¢2 is further reduced. As a test, [786] performed the calculation for w = —0.9
and ¢} = 107° and found o.2/c2 = 2.6 and o.2/c? = 1.09 for WL and galaxy power spectrum
experiments, respectively.

Such small sound speeds are not in contrast with the fundamental expectation of dark energy
being much smoother that dark matter: even with c¢s =~ 0.01, dark-energy perturbations are
more than one order of magnitude weaker than dark matter ones (at least for the class of models
investigated here) and safely below nonlinearity at the present time at all scales. Models of “cold”
dark energy are interesting because they can cross the phantom divide [536] and contribute to
the cluster masses [258] (see also Section 1.6.2 of this review ). Small ¢s could be constructed for
instance with scalar fields with non-standard kinetic energy terms.

1.8.7 Weak lensing constraints on f(R) gravity

In this section, we present the Euclid weak lensing forecasts of a specific, but very popular, class
of models, the so-called f(R) models of gravity. As we have already seen in Section 1.4.6 these
models are described by the action

Sgrav = /\/ng‘*x [{6(7?(); - ﬁm} : (1.8.31)
where f(R) is an arbitrary function of the Ricci scalar and Ly, is the Lagrange density of standard
matter and radiation.

In principle one has complete freedom to specify the function f(R), and so any expansion
history can be reproduced. However, as discussed in Section 1.4.6, those that remain viable are
the subset that very closely mimic the standard ACDM background expansion, as this restricted
subclass of models can evade solar system constraints [230, 906, 410], have a standard matter era
in which the scale factor evolves according to a(t) o t*/3 [43] and can also be free of ghost and
tachyon instabilities [682, 415].

To this subclass belongs the popular f(R) model proposed by [456] (1.4.52). [200] demonstrated
that Euclid will have the power of distinguishing between it and ACDM with a good accuracy.
They performed a tomographic analysis using several values of the maximum allowed wavenumber
of the Fisher matrices; specifically, a conservative value of 1000, an optimistic value of 5000 and
a bin-dependent setting, which increases the maximum angular wavenumber for distant shells and
reduces it for nearby shells. Moreover, they computed the Bayesian expected evidence for the
model of Eq. (1.4.52) over the ACDM model as a function of the extra parameter n. This can be
done because the ACDM model is formally nested in this f(R) model, and the latter is equivalent
to the former when n = 0. Their results are shown in Figure 27. For another Bayesian evidence
analysis of f(R) models and the added value of probing the growth of structure with galaxy surveys
see also [850].

This subclass of f(R) models can be parameterized solely in terms of the mass of the scalar
field, which as we have seen in Eq. (1.4.71) is related to the f(R) functional form via the relation

1
37 rr[Roac(a)]

where R subscripts denote differentiation with respect to R. The function f rr can be approxi-
mated by its standard ACDM form,

Rback ~ 3Qm0
HZ — a?

M?(a) (1.8.32)

+ 120y, (1.8.33)

valid for z < 1000. The mass M (a) is typically a function of redshift which decays from a large
value in the early universe to its present day value Mj.
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Figure 27: The Bayes factor In B for the f(R) model of Eq. (1.4.52) over standard ACDM as a function
of the extra parameter n. The green, red and blue curves refer to the conservative, bin-dependent and
optimistic fmax, respectively. The horizontal lines denote the Jeffreys’ scale levels of significance.

Whilst these models are practically indistinguishable from ACDM at the level of background
expansion, there is a significant difference in the evolution of perturbations relative to the standard
GR behavior.

The evolution of linear density perturbations in the context of f(R) gravity is markedly different
than in the standard ACDM scenario; dy, = dpm/pm acquires a nontrivial scale dependence at late
times. This is due to the presence of an additional scale M (a) in the equations; as any given mode
crosses the modified gravity ‘horizon’ k = aM (a), said mode will feel an enhanced gravitational
force due to the scalar field. This will have the effect of increasing the power of small scale modes.

Perturbations on sub-horizon scales in the Newtonian gauge evolve approximately according to

2K?
3+2K2
kQ(P = —47TG (3)1:3[(2) CLme(Sm’ (1835)
. . 3+ 4K2
O + 2Hby, — A7G <3I3K2> Pradm =0, (1.8.36)

where K = k/(aM (a)). These equations represent a particular example of a general parameter-
ization introduced in [636, 131, 983]. To solve them one should first parameterize the scalaron
mass M (a), choosing a form that broadly describes the behavior of viable f(R) models. A suitable
functional form, which takes into account the evolution of M (a) in both the matter era and the
late-time accelerating epoch, is given by [887]

—3 —3\ 2V
+ 4a
M2 = M2 a) , 1.8.37

0 ( 1+ 4a;° (1.8:37)

where a, is the scale factor at matter-A equality; a. = (Qmo/Q4)Y3. There are two modified
gravity parameters; My is the mass of the scalaron at the present time and v is the rate of increase
of M(a) to the past.

In Figure 28 the linear matter power spectrum is exhibited for this parameterization (dashed
line), along with the standard ACDM power spectrum (solid line). The observed, redshift depen-
dent tilt is due to the scalaron’s influence on small scale modes, and represents a clear modified
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Figure 28: Left panel: Linear matter power spectra for ACDM (solid line; My' = 0, v = 1.5) and
scalaron (dashed line; My ' = 375[10%® h™' eV~!], v = 1.5) cosmologies. The modification to gravity
causes a sizeable scale dependent effect in the growth of perturbations. The redshift dependence of the
scalaron can be seen by comparing the top and bottom pairs of power spectra evaluated at redshifts z = 0.0
and z = 1.5, respectively. Right panel: The environmental dependent chameleon mechanism can be seen
in the mildly nonlinear regime. We exhibit the fractional difference (P(k) — Par(k))/Par(k) between
the f(R) and GR power spectra for the model (1.8.37) with parameters M, ' = 375[10%® h™' eV~'] and
v = 1.5. The dashed lines represent linear power spectra (P (k) and Pgr (k) calculated with no higher order
effects) and the solid lines are the power spectra calculated to second order. We see that the nonlinearities
decrease the modified gravity signal. This is a result of the chameleon mechanism. The top set of lines
correspond to z = 0 and the bottom to z = 0.9; demonstrating that the modified gravity signal dramatically
decreases for larger z. This is due to the scalaron mass being much larger at higher redshifts. Furthermore,
nonlinear effects are less significant for increasing z.
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gravity signal. Since weak lensing is sensitive to the underlying matter power spectrum, we expect
Euclid to provide direct constraints on the mass of the scalar field.

By performing a Fisher analysis, using the standard Euclid specifications, [887] calculates the
expected f(R) parameter sensitivity of the weak lensing survey. By combining Euclid weak lensing
and Planck Fisher matrices, both modified gravity parameters My and v are shown to be strongly
constrained by the growth data in Figure 29. The expected 1o bounds on M, and v are quoted
as My = 1.34 £ 0.62 x 1073%h eV], v = 1.5 + 0.18 when using linear data [ < 400 only and
My = 1.34 £0.25 x 1073%[h eV], v = 1.5 + 0.04 when utilizing the full set of nonlinear modes
[ < 10000.
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Figure 29: 68% (dark grey) and 95% (light grey) projected bounds on the modified gravity parameters
My ! and v for the combined Euclid weak lensing and Planck CMB surveys. The smaller (larger) contours
correspond to including modes | = 400(10000) in the weak lensing analysis.

1.8.8 Forecast constraints on coupled quintessence cosmologies

In this section we present forecasts for coupled quintessence cosmologies [33, 955, 724], obtained
when combining Euclid weak lensing, Euclid redshift survey (baryon acoustic oscillations, redshift
distortions and full P(k) shape) and CMB as obtained in Planck (see also the next section for CMB
priors). Results reported here were obtained in [42] and we refer to it for details on the analysis
and Planck specifications (for weak lensing and CMB constraints on coupled quintessence with a
different coupling see also [637, 284]). In [42] the coupling is the one described in Section 1.4.4.4,
as induced by a scalar-tensor model. The slope « of the Ratra—Peebles potential is included as an
additional parameter and Euclid specifications refer to the Euclid Definition phase [551].

The combined Fisher confidence regions are plotted in Figure 30 and the results are in Table 13.
The main result is that future surveys can constrain the coupling of dark energy to dark matter
% to less than 3 - 10~%. Interestingly, some combinations of parameters (e.g., Q vs a) seem to
profit the most from the combination of the three probes.

We can also ask whether a better knowledge of the parameters {a, Qc, h, Qp, ns, 0g,log(A4)},
obtained by independent future observations, can give us better constraints on the coupling 52. In
Table 14 we show the errors on 32 when we have a better knowledge of only one other parameter,
which is here fixed to the reference value. All remaining parameters are marginalized over.

It is remarkable to notice that the combination of CMB, power spectrum and weak lensing
is already a powerful tool and a better knowledge of one parameter does not improve much the
constraints on 2. CMB alone, instead, improves by a factor 3 when €, is known and by a factor
2 when h is known. The power spectrum is mostly influenced by €., which allows to improve

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2013-6


http://www.livingreviews.org/lrr-2013-6

114 Luca Amendola et al. (The Euclid Theory Working Group)

2 0.26 0.08
0.24
1
-\ 022
. .
0 7 S 020
/ J
-1
0.16
2 001 002 003 004
. ot v : 0 001 0.02° 003 0.04 0 001 002 003 004
i i 7
1.10 12 0.30
1.0
0.25
0.8 o
0.20
0.6
04 0.15
0 001 002 003 004 “0 001 002 003  0.04 -2 -1 0 1 2
Jia B «
1.10
0.08
1.05
0.06,
¢ 1.00
) — — Nl <
0.04 )
. 0.95
0.02 0.90
0.85
-2 -1 0 1 2 5 3
@ «

Figure 30: Comparison among predicted confidence contours for the cosmological parameter set © =
{B8%, a, Qe, h, Qy, s, 08, log(A)} using CMB (Planck, blue contours), P(k) (pink-violet contours) and weak
lensing (orange-red contours) with Euclid-like specifications. Image reproduced by permission from [42],
copyright by APS.
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Table 13: 1-¢ errors for the set © = {82, a, Qc, h, Qp, ns 08, log(A)} of cosmological parameters, combining
CMB + P(k) (left column) and CMB + P(k) + WL (right column).

Parameter o; CMB + P(k) o¢; CMB + P(k) + WL

82 0.00051 0.00032
o 0.055 0.032
Q. 0.0037 0.0010
h 0.0080 0.0048
Q 0.00047 0.00041
ns 0.0057 0.0049
o8 0.0049 0.0036
log(A) 0.0051 0.0027

constraints on the coupling by more than a factor 2. Weak lensing gains the most by a better
knowledge of o5.

Table 14: 1-0 errors for 82, for CMB, P(k), WL and CMB + P(k) + WL. For each line, only the
parameter in the left column has been fixed to the reference value. The first line corresponds to the case
in which we have marginalized over all parameters. Table reproduced by permission from [42], copyright
by APS.

Fixed parameter CMB  P(k) WL CMB + P(k) + WL
(Marginalized on all params) 0.0094 0.0015  0.012 0.00032
« 0.0093 0.00085  0.0098 0.00030
Qe 0.0026 0.00066 0.0093 0.00032
h 0.0044 0.0013 0.011 0.00032
Qp 0.0087 0.0014 0.012 0.00030
N 0.0074 0.0014 0.012 0.00028
o8 0.0094 0.00084 0.0053 0.00030
log(A) 0.0090 0.0015 0.012 0.00032

1.8.9 Extra-Euclidean data and priors

Other dark-energy projects will enable the cross-check of the dark-energy constraints from Euclid.
These include Planck, BOSS, WiggleZ, HETDEX, DES, Panstarrs, LSST, BigBOSS and SKA.

Planck will provide exquisite constraints on cosmological parameters, but not tight constraints
on dark energy by itself, as CMB data are not sensitive to the nature of dark energy (which has to be
probed at z < 2, where dark energy becomes increasingly important in the cosmic expansion history
and the growth history of cosmic large scale structure). Planck data in combination with Euclid
data provide powerful constraints on dark energy and tests of gravity. In the next Section 1.8.9.1,
we will discuss how to create a Gaussian approximation to the Planck parameter constraints that
can be combined with Euclid forecasts in order to model the expected sensitivity until the actual
Planck data is available towards the end of 2012.

The galaxy redshift surveys BOSS, WiggleZ, HETDEX, and BigBOSS are complementary
to Euclid, since the overlap in redshift ranges of different galaxy redshift surveys, both space
and ground-based, is critical for understanding systematic effects such as bias through the use of
multiple tracers of cosmic large scale structure. Euclid will survey Ha emission line galaxies at
0.5 < z < 2.0 over 20,000 square degrees. The use of multiple tracers of cosmic large scale structure
can reduce systematic effects and ultimately increase the precision of dark-energy measurements
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from galaxy redshift surveys [see, e.g., 811].

Currently on-going or recently completed surveys which cover a sufficiently large volume to
measure BAO at several redshifts and thus have science goals common to Euclid, are the Sloan
Digital Sky Survey III Baryon Oscillations Spectroscopic Survey (BOSS for short) and the WiggleZ
survey.

BOSS? maps the redshifts of 1.5 million Luminous Red Galaxies (LRGs) out to z ~ 0.7 over
10,000 square degrees, measuring the BAO signal, the large-scale galaxy correlations and extracting
information of the growth from redshift space distortions. A simultaneous survey of 2.2 < z < 3.5
quasars measures the acoustic oscillations in the correlations of the Lyman-« forest. LRGs were
chosen for their high bias, their approximately constant number density and, of course, the fact
that they are bright. Their spectra and redshift can be measured with relatively short exposures
in a 2.4 m ground-based telescope. The data-taking of BOSS will end in 2014.

The WiggleZ'" survey is now completed, it measured redshifts for almost 240,000 galaxies over
1000 square degrees at 0.2 < z < 1. The target are luminous blue star-forming galaxies with
spectra dominated by patterns of strong atomic emission lines. This choice is motivated by the
fact that these emission lines can be used to measure a galaxy redshift in relatively short exposures
of a 4 m class ground-based telescope.

Red quiescent galaxies inhabit dense clusters environments, while blue star-forming galaxies
trace better lower density regions such as sheets and filaments. It is believed that on large cosmo-
logical scales these details are unimportant and that galaxies are simply tracers of the underlying
dark matter: different galaxy type will only have a different ‘bias factor’. The fact that so far
results from BOSS and WiggleZ agree well confirms this assumption.

Between now and the availability of Euclid data other wide-field spectroscopic galaxy redshift
surveys will take place. Among them, eBOSS will extend BOSS operations focusing on 3100 square
degrees using a variety of tracers. Emission line galaxies will be targeted in the redshift window
0.6 < z < 1. This will extend to higher redshift and extend the sky coverage of the WiggleZ survey.
Quasars in the redshift range 1 < z < 2.2 will be used as tracers of the BAO feature instead of
galaxies. The BAO LRG measurement will be extended to z ~ 0.8, and the quasar number density
at z > 2.2 of BOSS will be tripled, thus improving the BAO Lyman-«a forest measure.

HETDEX is expected to begin full science operation is 2014: it aims at surveying 1 million
Lyman-a emitting galaxies at 1.9 < z < 3.5 over 420 square degrees. The main science goal is to
map the BAO feature over this redshift range.

Further in the future, we highlight here the proposed BigBOSS survey and SuMIRe survey
with HyperSupremeCam on the Subaru telescope. The BigBOSS survey will target [OII] emission
line galaxies at 0.6 < z < 1.5 (and LRGs at z < 0.6) over 14,000 square degrees. The SuMIRe
wide survey proposes to survey ~ 2000 square degrees in the redshift range 0.6 < z < 1.6 targeting
LRGs and [OII] emission-line galaxies. Both these surveys will likely reach full science operations
roughly at the same time as the Euclid launch.

Wide field photometric surveys are also being carried out and planned. The on-going Dark
Energy Survey (DES)!'! will cover 5000 square degrees out to z ~ 1.3 and is expected to complete
observations in 2017; the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS),
on-going at the single-mirror stage, The PanSTARSS survey, which first phase is already on-going,
will cover 30,000 square degrees with 5 photometry bands for redshifts up to z ~ 1.5. The second
pause of the survey is expected to be competed by the time Euclid launches. More in the future
the Large Synoptic Survey Telescope (LSST) will cover redshifts 0.3 < z < 3.6 over 20,000 square
degrees, but is expected to begin operations in 2021, after Euclid’s planned launch date. The

9 http://www.sdss3.org/surveys/boss.php
10 nttp://wigglez.swin.edu.au/site/index.html
M http://www.darkenergysurvey.org
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Figure 31: Redshift coverage and volume for the surveys mentioned in the text. Spectroscopic surveys
only are shown. Recall that while future and forthcoming photometric surveys focus on weak gravitational
lensing, spectroscopic surveys can extract the three dimensional galaxy clustering information and therefore
measure radial and tangential BAO signal, the power spectrum shape and the growth of structure via
redshift space distortions. The three-dimensional clustering information is crucial for BAO. For example
to obtain the same figure of merit for dark-energy properties a photometric survey must cover a volume
roughly ten times bigger than a spectroscopic one.

galaxy imaging surveys DES, Panstarrs, and LSST will complement Euclid imaging survey in both
the choice of band passes, and the sky coverage.

SKA (which is expected to begin operations in 2020 and reach full operational capability in
2024) will survey neutral atomic hydrogen (HI) through the radio 21 cm line, over a very wide
area of the sky. It is expected to detect HI emitting galaxies out to z ~ 1.5 making it nicely
complementary to Euclid. Such galaxy redshift survey will of course offer the opportunity to
measure the galaxy power spectrum (and therefore the BAO feature) out to z ~ 1.5. The well
behaved point spread function of a synthesis array like the SKA should ensure superb image quality
enabling cosmic shear to be accurately measured and tomographic weak lensing used to constrain
cosmology and in particular dark energy. This weak lensing capability also makes SKA and Euclid
very complementary. For more information see, e.g., [755, 140].

The Figure 31 puts Euclid into context. Euclid will survey Ha emission line galaxies at 0.5 <
z < 2.0 over 20,000 square degrees. Clearly, Euclid with both spectroscopic and photometric
capabilities and wide field coverage surpasses all surveys that will be carried out by the time it
launches. The large volume surveyed is crucial as the number of modes to sample for example
the power spectrum and the BAO feature scales with the volume. The redshift coverage is also
important especially at z < 2 where the dark-energy contribution to the density pod the universe
is non-negligible (at z > 2 for most cosmologies the universe is effectively Einstein—de Sitter,
therefore, high redshifts do not contribute much to constraints on dark energy). Having a single
instrument, a uniform target selection and calibration is also crucial to perform precision tests of
cosmology without having to build a ‘ladder’ from different surveys selecting different targets. On
the other hand it is also easy to see the synergy between these ground-based surveys and Euclid:
by mapping different targets (over the same sky area and ofter the same redshift range) one can
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gain better control over issues such as bias factors. The use of multiple tracers of cosmic large
scale structure can reduce systematic effects and ultimately increase the precision of dark-energy
measurements from galaxy redshift surveys [see, e.g., 811].

Moreover, having both spectroscopic and imaging capabilities Euclid is uniquely poised to ex-
plore the clustering with both the three dimensional distribution of galaxies and weak gravitational
lensing.

1.8.9.1 The Planck prior

Planck will provide highly accurate constraints on many cosmological parameters, which makes
the construction of a Planck Fisher matrix somewhat non-trivial as it is very sensitive to the
detailed assumptions. A relatively robust approach was used by [676] to construct a Gaussian
approximation to the WMAP data by introducing two extra parameters,

R= QmHg T(ZCMB) y la = WT(ZCMB)/Ts(ZCMB) s (1838)

where r(z) is the comoving distance from the observer to redshift z, and rs(zcmp) is the comoving
size of the sound-horizon at decoupling.

In this scheme, [, describes the peak location through the angular diameter distance to de-
coupling and the size of the sound horizon at that time. If the geometry changes, either due to
non-zero curvature or due to a different equation of state of dark energy, [, changes in the same way
as the peak structure. R encodes similar information, but in addition contains the matter density
which is connected with the peak height. In a given class of models (for example, quintessence dark
energy), these parameters are “observables” related to the shape of the observed CMB spectrum,
and constraints on them remain the same independent of (the prescription for) the equation of
state of the dark energy.

As a caveat we note that if some assumptions regarding the evolution of perturbations are
changed, then the corresponding R and [, constraints and covariance matrix will need to be
recalculated under each such hypothesis, for instance, if massive neutrinos were to be included, or
even if tensors were included in the analysis [255]. Further, R as defined in Eq. (1.8.38) can be
badly constrained and is quite useless if the dark energy clusters as well, e.g., if it has a low sound
speed, as in the model discussed in [534].

In order to derive a Planck fisher matrix, [676] simulated Planck data as described in [703] and
derived constraints on our base parameter set {R,l,, Qph% ns} with a MCMC based likelihood
analysis. In addition to R and I, they used the baryon density €,h%, and optionally the spectral
index of the scalar perturbations ng, as these are strongly correlated with R and [,, which means
that we will lose information if we do not include these correlations. As shown in [676], the resulting
Fisher matrix loses some information relative to the full likelihood when only considering Planck
data, but it is very close to the full analysis as soon as extra data is used. Since this is the intended
application here, it is perfectly sufficient for our purposes.

The following tables, from [676], give the covariance matrix for quintessence-like dark energy
(high sound speed, no anisotropic stress) on the base parameters and the Fisher matrix derived
from it. Please consult the appendix of that paper for the precise method used to compute R and
l, as the results are sensitive to small variations.
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Table 15: R, l., Qyh? and n, estimated from Planck simulated data. Table reproduced by permission
from [676], copyright by APS.

Parameter mean rms Variance
Qr #0

R 1.7016 0.0055

la 302.108 0.098

Quh? 0.02199 0.00017

N 0.9602 0.0038

Table 16: Covariance matrix for (R, l,, Qyh?, ns) from Planck. Table reproduced by permission from [676],
copyright by APS.

R la Quh2 ns
Qr #0
R 0.303492E-04  0.297688E-03 —0.545532E-06 —0.175976E-04
Lo 0.297688E-03  0.951881E-02 -0.759752E-05 -0.183814E-03
Quh2  —0.545532E-06 —0.759752E-05  0.279464E-07  0.238882E-06
ne  -0.175976E-04 —0.183814E-03  0.238882E-06  0.147219E-04

Table 17: Fisher matrix for (wo, wa, QpE, QK Wm, W, ng) derived from the covariance matrix for
(R, 1a, Qh?,ns) from Planck. Table reproduced by permission from [676], copyright by APS.

wo W QpE Qp Wm, wp ns

wo 172276E4+06  .490320E4-05 .674392E4-06 —.208974E+07 .325219E+07 —.790504E+407 -.549427E4-05
Wq .490320E+05  .139551E+05 .191940E+06 —.594767E+06 .925615E+06 —.224987E+07 —.156374E+05
Qpe  .674392E406 .191940E+06 .263997E+07 —.818048E+07 .127310E+08 —.309450E+08 —.215078E+06
Q. —.208974E4+07 —.594767E+06 —.818048E+07 .253489E+08 —.394501E+08 .958892E+08 .666335E+06
Wm .325219E+07  .925615E+06 .127310E+08 —.394501E+08 .633564E+08 —.147973E+09 -.501247E+06
wy —.790504E+07 —.224987E+07 —.309450E+08 .958892E+08 -.147973E+09 .405079E+09 .219009E+07
ns  —549427E+05 —.156374E+05 —.215078E+06 .666335E+06 —.501247E+06 .219009E+07 .242767E+06
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1.9 Summary and outlook

This section introduced the main features of the most popular dark energy/modified gravity models.
Here we summarize the performance of Euclid with respect to these models. Unless otherwise
indicated, we always assume Euclid with no external priors and all errors fully marginalized over
the standard cosmological parameters. Here RS denotes the redshift survey, WLS the weak lensing

one.

1.

10.

11.

12.

Euclid (RS) should be able to measure the main standard cosmological parameters to percent
or sub-percent level as detailed in Table 7 (all marginalized errors, including constant equation
of state and constant growth rate, see Table 11 and Figure 20).

The two CPL parameters wg, w; should be measured with errors 0.06 and 0.26, respectively
(fixing the growth rate to fiducial), see Table 11 and Figure 20.

The equation of state w and the growth rate parameter -, both assumed constant, should
be simultaneously constrained to within 0.04 and 0.03, respectively.

The growth function should be constrained to within 0.01-0.02 for each redshift bin from
z=0.7 to z = 2 (see Table 4).

A scale-independent bias function b(z) should be constrained to within 0.02 for each redshift
bin (see Table 4).

. The growth rate parameters ~y,y; defined in Eq. 1.8.5 should be measured to within 0.08,

0.17, respectively.

Euclid will achieve an accuracy on measurements of the dark energy sound speed of o/(¢?)/c? =
2615 (WLS) and o(c?)/c? = 50.05 (RS), if 2 = 1, or o(c?)/c? = 0.132 (WLS) and o(c?)/c? =
0.118 (RS), if ¢2 = 1075,

. The coupling 32 between dark energy and dark matter can be constrained by Euclid (with

Planck) to less than 3 -10=* (see Figure 30 and Table 13).

. Any departure from GR greater than ~ 0.03 in the growth index « will be distinguished by

the WLS [429].

Euclid WLS can detect deviations between 3% and 10% from the GR value of the modified-
gravity parameter ¥ (Eq. 1.3.28), whilst with the RS there will be a 20% accuracy on both
Y and p (Eq. 1.3.27).

With the WLS, Euclid should provide an upper limit to the present dimensionless scalaron
inverse mass u = Hy/Mj of the f(R) scalar (where the time dependent scalar field mass is
defined in Eq. 1.8.37) as u = 0.00 £ 1.10 x 1073 for I < 400 and p = 0.0 & 2.10 x 10~* for
1 < 10000

The WLS will be able to rule out the DGP model growth index with a Bayes factor | In B| ~ 50
[429], and viable phenomenological extensions could be detected at the 3o level for 1000 <
¢ <4000 [199].

At the same time, there are several areas of research that we feel are important for the future of
Euclid, both to improve the current analyses and to maximize its science return. Here we provide
a preliminary, partial list.
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1. The results of the redshift survey and weak lensing surveys should be combined in a statis-
tically coherent way

2. The set of possible priors to be combined with Euclid data should be better defined

3. The forecasts for the parameters of the modified gravity and clustered dark-energy models
should be extended to include more general cases

4. We should estimate the errors on a general reconstruction of the modified gravity functions
3, 1 or of the metric potentials ¥, ® as a function of both scale and time.
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Part 2: Dark Matter and Neutrinos

2.1 Introduction

The identification of dark matter is one of the most important open problems in particle physics
and cosmology. In standard cosmology, dark matter contributes 85% of all the matter in the
universe, but we do not know what it is made of, as we have never observed dark matter particles
in our laboratories. The foundations of the modern dark matter paradigm were laid in the 1970s
and 1980s, after decades of slow accumulation of evidence. Back in the 1930s, it was noticed that
the Coma cluster seemed to contain much more mass than what could be inferred from visible
galaxies [992, 993], and a few years later, it became clear that the Andromeda galaxy M31 rotates
anomalously fast at large radii, as if most of its mass resides in its outer regions. Several other
pieces of evidence provided further support to the dark matter hypothesis, including the so called
timing-argument. In the 1970s, rotation curves were extended to larger radii and to many other
spiral galaxies, proving the presence of large amounts of mass on scales much larger than the size
of galactic disks [712].

We are now in the position of determining the total abundance of dark matter relative to normal,
baryonic matter, in the universe with exquisite accuracy; we have a much better understanding of
how dark matter is distributed in structures ranging from dwarf galaxies to clusters of galaxies,
thanks to gravitational lensing observations [see 644, for a review| and theoretically from high-
resolution numerical simulations made possible by modern supercomputers (such as, for example,
the Millennium or Marenostrum simulations).

Originally, Zwicky thought of dark matter as most likely baryonic — missing cold gas, or low
mass stars. Rotation curve observation could be explained by dark matter in the form of MAssive
Compact Halo Objects (MACHOs, e.g., a halo of black holes or brown dwarfs). However, the
MACHO and EROS experiments have shown that dark matter cannot be in the mass range 0.6 x
107" My < M < 15 My, if it comprises massive compact objects [23, 889]. Gas measurements are
now extremely sensitive, ruling out dark matter as undetected gas ([134, 238, 765]; but see [728]).
And the CMB and Big Bang Nucleosynthesis require the total mass in baryons in the universe to
be significantly less that the total matter density [759, 246, 909].

This is one of the most spectacular results in cosmology obtained at the end of the 20th century:
dark matter has to be non-baryonic. As a result, our expectation of the nature of dark matter
shifted from an astrophysical explanation to particle physics, linking the smallest and largest scales
that we can probe.

During the seventies the possibility of the neutrino to be the dark matter particle with a mass
of tenth of eV was explored, but it was realized that such light particle would erase the primordial
fluctuations on small scales, leading to a lack of structure formation on galactic scales and below.
It was therefore postulated that the dark matter particle must be cold (low thermal energy, to
allow structures on small scale to form), collisionless (or have a very low interaction cross section,
because dark matter is observed to be pressureless) and stable over a long period of time: such
a candidate is referred to as a weakly interacting massive particle (WIMP). This is the standard
cold dark matter (CDM) picture [see 369, 719].

Particle physicists have proposed several possible dark matter candidates. Supersymmetry
(SUSY) is an attractive extension of the Standard Model of particle physics. The lightest SUSY
particle (the LSP) is stable, uncharged, and weakly interacting, providing a perfect WIMP can-
didate known as a neutralino. Specific realizations of SUSY each provide slightly different dark
matter candidates [for a review see 482]. Another distinct dark matter candidate arising from
extensions of the Standard Model is the axion, a hypothetical pseudo-Goldstone boson whose exis-
tence was postulated to solve the so called strong C'P problem in quantum chromodynamics [715],
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also arising generically in string theory [965, 871]. They are known to be very well motivated dark
matter candidates [for a review of axions in cosmology see 826]. Other well-known candidates
are sterile neutrinos, which interact only gravitationally with ordinary matter, apart from a small
mixing with the familiar neutrinos of the Standard Model (which should make them ultimately
unstable), and candidates arising from technicolor [see, e.g., 412]. A wide array of other possibili-
ties have been discussed in the literature, and they are currently being searched for with a variety
of experimental strategies [for a complete review of dark matter in particle physics see 51].

There remain some possible discrepancies in the standard cold dark matter model, such as the
missing satellites problem, and the cusp-core controversy (see below for details and references)
that have led some authors to question the CDM model and to propose alternative solutions.
The physical mechanism by which one may reconcile the observations with the standard theory
of structure formation is the suppression of the matter power spectrum at small scales. This can
be achieved with dark matter particles with a strong self-scattering cross section, or with particles
with a non-negligible velocity dispersion at the epoch of structure formation, also referred to as
warm dark matter (WDM) particles.

Another possibility is that the extra gravitational degrees of freedom arising in modified theories
of gravity play the role of dark matter. In particular this happens for the Einstein-Aether, TeVeS
and bigravity models. These theories were developed following the idea that the presence of
unknown dark components in the universe may be indicating us that it is not the matter component
that is exotic but rather that gravity is not described by standard GR.

Finally, we note that only from astrophysical probes can any dark matter candidate found in
either direct detection experiments or accelerators, such as the LHC, be confirmed. Any direct
dark matter candidate discovery will give Euclid a clear goal to verify the existence of this particle
on astrophysical scales. Within this context, Euclid can provide precious information on the nature
of dark matter. In this part, we discuss the most relevant results that can be obtained with Euclid,
and that can be summarized as follows:

e The discovery of an exponential suppression in the power spectrum at small scales, that
would rule out CDM and favor WDM candidates, or, in absence of it, the determination of
a lower limit on the mass of the WDM particle, mwpn, of 2 keV;

e the determination of an upper limit on the dark matter self-interaction cross section o /m ~
10727 cm? GeV~! at 68% CL, which represents an improvement of three orders of magni-
tude compared to the best constraint available today, which arises from the analysis of the
dynamics of the bullet cluster;

e the measurement of the slope of the dark matter distribution within galaxies and clusters of
galaxies with unprecedented accuracy;

e the determination of the properties of the only known — though certainly subdominant —
non-baryonic dark matter particle: the standard neutrino, for which Euclid can provide
information on the absolute mass scale, its normal or inverted hierarchy, as well as its Dirac
or Majorana nature;

e the test of unified dark matter (UDM, or quartessence) models, through the detection of
characteristic oscillatory features predicted by these theories on the matter power spectrum,
detectable through weak lensing or baryonic acoustic oscillations studies;

e a probe of the axiverse, i.e., of the legacy of string theory through the presence of ultra-light
scalar fields that can affect the growth of structure, introducing features in the matter power
spectrum and modifying the growth rate of structures.
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Finally, Euclid will provide, through gravitational lensing measurement, a map of the dark matter
distribution over the entire extragalactic sky, allowing us to study the effect of the dark matter
environment on galaxy evolution and structure formation as a function of time. This map will
pinpoint our place within the dark universe.

2.2 Dark matter halo properties

Dark matter was first proposed by [993] to explain the anomalously high velocity of galaxies
in galaxy clusters. Since then, evidence for dark matter has been accumulating on all scales.
The velocities of individual stars in dwarf galaxies suggest that these are the most dark matter
dominated systems in the universe [e.g., 650, 509, 834, 635, 934]. Low surface brightness (LSB)
and giant spiral galaxies rotate too fast to be supported by their stars and gas alone, indicating the
presence of dark matter [286, 833, 153, 512]. Gravitationally lensed giant elliptical galaxies and
galaxy clusters require dark matter to explain their observed image distributions [e.g., 761, 156,
935, 851, 244]. Finally, the temperature fluctuations in the cosmic microwave background (CMB)
radiation indicate the need for dark matter in about the same amount as that required in galaxy
clusters [e.g., 845, 968, 855].

While the case for particle dark matter is compelling, until we find direct evidence for such a
particle, astrophysics remains a unique dark matter probe. Many varieties of dark matter candi-
dates produce a noticeable change in the growth of structure in the universe [482, 865]. Warm dark
matter (WDM) suppresses the growth of structure in the early universe producing a measurable
effect on the small-scale matter power spectrum [143, 67, 87]. Self-interacting dark matter (SIDM)
changes the expected density distribution within bound dark matter structures [273, 440]. In both
cases, the key information about dark matter is contained on very small scales. In this section,
we discuss previous work that has attempted to measure the small scale matter distribution in
the universe, and discuss how Euclid will revolutionize the field. We divide efforts into three main
areas: measuring the halo mass function on large scales, but at high redshift; measuring the halo
mass function on small scales through lens substructures; measuring the dark matter density profile
within galaxies and galaxy clusters.

2.2.1 The halo mass function as a function of redshift

Attempts have already been made to probe the small scale power in the universe through galaxy
counts. Figure 32 shows the best measurement of the ‘baryonic mass function’ of galaxies to date
[758]. This is the number of galaxies with a given total mass in baryons normalized to a volume
of 1 Mpc. To achieve this measurement, [758] sewed together results from a wide range of surveys
reaching a baryonic mass of just ~ 10% Mg — some of the smallest galaxies observed to date.

The baryonic mass function already turns up an interesting result. Over-plotted in blue on
Figure 32 is the dark matter mass function expected assuming that dark matter is ‘cold’ — i.e.,
that it has no preferred scale. Notice that this has a different shape. On large scales, there should
be bound dark matter structures with masses as large as 10'* M, yet the number of observed
galaxies drops off exponentially above a baryonic mass of ~ 10*2 M. This discrepancy is well-
understood. Such large dark matter haloes have been observed, but they no longer host a single
galaxy; rather they are bound collections of galaxies — galaxy clusters [see e.g. 993]. However,
there is also a discrepancy at low masses that is not so well understood. There should be far more
bound dark matter haloes than observed small galaxies. This is the well-known ‘missing satellite’
problem [662, 511].

The missing satellite problem could be telling us that dark matter is not cold. The red line on
Figure 32 shows the expected dark matter mass function for WDM with a (thermal relic) mass of
mwpmMm = 1 keV. Notice that this gives an excellent match to the observed slope of the baryonic
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Figure 32: The baryonic mass function of galaxies (data points). The dotted line shows a Schechter
function fit to the data. The blue line shows the predicted mass function of dark matter haloes, assuming
that dark matter is cold. The red line shows the same assuming that dark matter is warm with a (thermal
relic) mass of mwpm = 1 keV.

mass function on small scales. However, there may be a less exotic solution. It is likely that star
formation becomes inefficient in galaxies on small scales. A combination of supernovae feedback,
reionization and ram-pressure stripping is sufficient to fully explain the observed distribution as-
suming pure CDM [529, 756, 603]. Such ‘baryon feedback’ solutions to the missing satellite problem
are also supported by recent measurements of the orbits of the Milky Way’s dwarf galaxies [594].

2.2.1.1 Weak and strong lensing measurements of the halo mass function

To make further progress on WDM constraints from astrophysics, we must avoid the issue of
baryonic physics by probing the halo mass function directly. The only tool for achieving this is
gravitational lensing. In weak lensing this means stacking data for a very large number of galaxies
to obtain an averaged mass function. In strong lensing, this means simply finding enough systems
with ‘good data.” Good data ideally means multiple sources with wide redshift separation [776];
combining independent data from dynamics with lensing may also prove a promising route [see
e.g. 893].

Euclid will measure the halo mass function down to ~ 10'3 M, using weak lensing. It will
simultaneously find 1000s of strong lensing systems. However, in both cases, the lowest mass scale
is limited by the lensing critical density. This limits us to probing down to a halo mass of ~ 10! M,
which gives poor constraints on the nature of dark matter. However, if such measurements can be
made as a function of redshift, the constraints improve dramatically. We discuss this in the next
Section.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2013-6


http://www.livingreviews.org/lrr-2013-6

126 Luca Amendola et al. (The Euclid Theory Working Group)

2.2.1.2 The advantage of going to high redshift

Dark matter constraints from the halo mass function become much stronger if the halo mass
function is measured as a function of redshift. This is because warm dark matter delays the growth
of structure formation as well as suppressing small scale power. This is illustrated in Figure 33,
which shows the fraction of mass in bound structures as a function of redshift, normalized to a halo
of Milky Way’s mass at redshift z = 0. Marked are different thermal relic WDM particle masses
in keV (black solid lines). Notice that the differences between WDM models increase significantly
towards higher redshift at a given mass scale. Thus we can obtain strong constraints on the nature
of dark matter by moving to higher z’s, rather than lower halo mass.

The utility of redshift information was illustrated recently by observations of the Lyman-a
absorption spectra from Quasars [927, 812]. Quasars act as cosmic ‘flashlights’ shining light from
the very distant universe. Some of this light is absorbed by intervening neutral gas leading to
absorption features in the Quasar spectra. Such features contain rich information about the mat-
ter distribution in the universe at high redshift. Thus, the Lyman-a forest measurements have
been able to place a lower bound of mwpym > 4 keV probing scales of ~ 1 Mpc. Key to the
success of this measurement is that much of the neutral gas lies in-between galaxies in filaments.
Thus, linear approximations for the growth of structures in WDM versus CDM remain acceptable,
while assuming that the baryons are a good tracer of the underlying matter field is also a good
approximation. However, improving on these early results means probing smaller scales where
nonlinearities and baryon physics will creep in. For this reason, tighter bounds must come from
techniques that either probe even higher redshifts, or even smaller scales. Lensing from Euclid is
an excellent candidate since it will achieve both while measuring the halo mass function directly
rather than through the visible baryons.

2.2.2 The dark matter density profile

An alternative approach to constraining dark matter models is to measure the distribution of dark
matter within galaxies. Figure 34 shows the central log-slope of the density distribution for 9
galaxies/groups and 3 lensing clusters as a function of the enclosed lensing mass [777, 757, 776].
Over the visible region of galaxies, the dark matter distribution tends towards a single power law:
p « r* Marked in red is the prediction from structure-formation simulations of the standard
cosmological model, that assume non-relativistic CDM, and that do not include any baryonic
matter. Notice that above an enclosed lensing mass of ~ 102 M, the agreement between theory
and observations is very good. This lends support to the idea that dark matter is cold and
not strongly self-interacting. However, this result is based on only a handful of galaxy clusters
with excellent data. Furthermore, lower mass galaxies and groups can, in principle, give tighter
constraints. In these mass ranges, however (Men. < 102 M), the lensing mass is dominated by the
visible stars. Determining the underlying dark matter distribution is then much more difficult. It
is likely that the dark matter distribution is also altered from simple predictions by the dynamical
interplay between the stars, gas and dark matter during galaxy formation [e.g., 296].
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Figure 33: The fraction of mass in bound structures as a function of redshift, normalized to a halo of
Milky Way’s mass at redshift z = 0. Marked are different masses of thermal-relic WDM particles in keV
(black solid lines). Notice that the differences between different WDM models increases towards higher
redshift.
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Figure 34: The central log-slope « of the density distribution p < 7 for 9 galaxies/groups and 3 lensing
clusters as a function of the enclosed lensing mass. Marked in red is the prediction from structure formation
simulations of the standard cosmological model, that assume non-relativistic CDM, and that do not include
any baryonic matter.
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2.3 Euclid dark matter studies: wide-field X-ray comple-
mentarity

The predominant extragalactic X-ray sources are AGNs and galaxy clusters. For dark matter
studies the latter are the more interesting targets. X-rays from clusters are emitted as thermal
bremsstrahlung by the hot intracluster medium (ICM) which contains most of the baryons in
the cluster. The thermal pressure of the ICM supports it against gravitational collapse so that
measuring the temperature through X-ray observations provides information about the mass of
the cluster and its distribution. Hence, X-rays form a complementary probe of the dark matter in
clusters to Euclid weak lensing measurements.

The ongoing X-ray missions XMM-Newton and Chandra have good enough angular resolu-
tion to measure the temperature and mass profiles in ~ 10 radial bins for clusters at reason-
able redshifts, although this requires long exposures. Many planned X-ray missions aim to im-
prove the spectral coverage, spectral resolution, and/or collection area of the present mission,
but they are nonetheless mostly suited for targeted observations of individual objects. Two no-
table exceptions are eROSITA? [207, launch 2014] and the Wide Field X-ray Telescope'® [WFXT
390, 931, 789, 773, 152, 790, proposed] which will both conduct full sky surveys and, in the case
of WFXT, also smaller but deeper surveys of large fractions of the sky.

A sample of high-angular resolution X-ray cluster observations can be used to test the prediction
from N-body simulations of structure formation that dark matter haloes are described by the NF'W
profile [684] with a concentration parameter c¢. This describes the steepness of the profile, which
is related to the mass of the halo [685]. Weak or strong lensing measurements of the mass profile,
such as those that will be provided from Euclid, can supplement the X-ray measurement and have
different systematics. Euclid could provide wide field weak lensing data for such a purpose with
very good point spread function (PSF) properties, but it is likely that the depth of the Euclid
survey will make dedicated deep field observations a better choice for a lensing counterpart to
the X-ray observations. However, if the WFXT mission becomes a reality, the sheer number of
detected clusters with mass profiles would mean Euclid could play a much more important role.

X-ray observations of galaxy clusters can constrain cosmology by measuring the geometry of
the universe through the baryon fraction fg.s [26] or by measuring the growth of structures by
determining the high-mass tail of the mass function [622]. The latter method would make the most
of the large number of clusters detected in full-sky surveys and there would be several benefits by
combining an X-ray and a lensing survey. It is not immediately clear which type of survey would
be able to better detect clusters at various redshifts and masses, and the combination of the two
probes could improve understanding of the sample completeness. An X-ray survey alone cannot
measure cluster masses with the required precision for cosmology. Instead, it requires a calibrated
relation between the X-ray temperature and the cluster mass. Such a calibration, derived from a
large sample of clusters, could be provided by Euclid. In any case, it is not clear yet whether the
large size of a Euclid sample would be more beneficial than deeper observations of fewer clusters.

Finally, X-ray observations can also confirm the nature of possible ‘bullet-like’ merging clusters.
In such systems the shock of the collision has displaced the ICM from the dark matter mass, which
is identified through gravitational lensing. This offers the opportunity to study dark matter haloes
with very few baryons and, e.g., search for signatures of decaying or annihilating dark matter.

12 nttp://www.mpe.mpg.de/erosita/
13 http://www.wixt.eu/home/Overview.html
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2.4 Dark matter mapping

Gravitational lensing offers a unique way to chart dark matter structures in the universe as it is
sensitive to all forms of matter. Weak lensing has been used to map the dark matter in galaxy
clusters [see for example 245] with high resolution reconstructions recovered for the most massive
strong lensing clusters [see for example 164]. Several lensing studies have also mapped the projected
surface mass density over degree scale-fields [386, 798, 532] to identify shear-selected groups and
clusters. The minimum mass scale that can be identified is limited only by the intrinsic ellipticity
noise in the lensing analysis and projection effects. Using a higher number density of galaxies in
the shear measurement reduces this noise, and for this reason the Deep Field Euclid Survey will
be truly unique for this area of research, permitting high resolution reconstructions of dark matter
in the field [645, 432] and the study of lenses at higher redshift.

There are several non-parametric methods to reconstruct dark matter in 2D which can be
broadly split into two categories: convergence techniques [486] and potential techniques [90]. In
the former one measures the projected surface mass density (or convergence) « directly by applying
a convolution to the measured shear under the assumption that x < 1. Potential techniques
perform a x? minimization and are better suited to the cluster regime and can also incorporate
strong lensing information [163]. In the majority of methods, choices need to be made about
smoothing scales to optimize signal-to-noise whilst preserving reconstruction resolution. Using
a wavelet method circumvents this choice [860, 497] but makes the resulting significance of the
reconstruction difficult to measure.

2.4.1 Charting the universe in 3D

The lensing distortion depends on the total projected surface mass density along the line of sight
and a geometrical factor that increases with source distance. This redshift dependence can be used
to recover the full 3D gravitational potential of the matter density as described in [455, 72] and
applied to the COMBO-17 survey in [879] and the COSMOS survey in [645]. This work has been
extended in [835] to reconstruct the full 3D mass density field and applied to the STAGES survey
in [836].

All 3D mass reconstruction methods require the use of a prior based on the expected mean
growth of matter density fluctuations. Without the inclusion of such a prior, [455] have shown
that one is unable to reasonably constrain the radial matter distribution, even for densely sampled
space-based quality lensing data. Therefore 3D maps cannot be directly used to infer cosmological
parameters.

The driving motivation behind the development of 3D reconstruction techniques was to enable
an unbiased 3D comparison of mass and light. Dark haloes for example would only be detected
in this manner. However the detailed analysis of noise and the radial PSF in the 3D lensing
reconstructions presented for the first time in [836] show how inherently noisy the process is.
Given the limitations of the method to resolve only the most massive structures in 3D the future
direction of the application of this method for the Euclid Wide survey should be to reconstruct large
scale structures in the 3D density field. Using more heavily spatially smoothed data we can expect
higher quality 3D resolution reconstructions as on degree scales the significance of modes in a 3D
mass density reconstruction are increased [835]. Adding additional information from flexion may
also improve mass reconstruction, although using flexion information alone is much less sensitive
than shear [733].
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2.5 Scattering cross sections

We now move towards discussing the particulate aspects of dark matter, starting with a discussion
on the scattering cross-sections of dark matter. At present, many physical properties of the dark
matter particle remain highly uncertain. Prospects for studying the scattering of dark matter
with each of the three major constituents of the universe — itself, baryons, and dark energy — are
outlined below.

2.5.1 Dark matter—dark matter interactions

Self-interacting dark matter (SIDM) was first postulated by [853], in an attempt to explain the
apparent paucity of low-mass haloes within the Local Group. The key characteristic of this model
is that CDM particles possess a large scattering cross-section, yet with negligible annihilation or
dissipation. The process of elastic scattering erases small substructures and cuspy cores, whilst
preserving the density profile of the haloes.

However, as highlighted by [399], cross-sections large enough to alleviate the structure formation
issues would also allow significant heat transfer from particles within a large halo to the cooler sub-
haloes. This effect is most prominent close to the centers of clusters. As the sub-halo evaporates,
the galaxy residing within the halo would be disrupted. Limiting this rate of evaporation to
exceed the Hubble time allows an upper bound to be placed on the scattering cross-section of
approximately o,/m, < 0.3 ecm? g=1 (neglecting any velocity dependence). Note the dependence
on particle mass — a more massive CDM particle would be associated with a lower number density,
thereby reducing the frequency of collisions.

[658] have performed ray-tracing through N-body simulations, and have discovered that the
ability for galaxy clusters to generate giant arcs from strong lensing is compromized if the dark
matter is subject to just a few collisions per particle. This constraint translates to an upper bound
op/mp < 0.1 cm? gt Furthermore, more recent analyses of SIDM models [629, 750] utilize data
from the Bullet Cluster to provide another independent limit on the scattering cross section, though
the upper bound remains unchanged. [643] have proposed that the tendency for baryonic and dark
matter to become separated within dynamical systems, as seen in the Bullet Cluster, could be
studied in greater detail if the analysis were to be extended over the full sky in FEuclid. This
concept is explored in further detail in the following section.

How do these cosmological constraints relate to the values anticipated by particle physics?
WIMPs are expected to fall in the range of 10 GeV to a few TeV. The aforementioned values
would then correspond to around o, < 1072* ¢cm?, at least twenty order of magnitudes greater than
what one might expect to achieve from neutral current interactions. Therefore in a cosmological
context WIMPs are essentially collisionless, as are axions, since they exhibit an even smaller
cross section. Any cosmological detection of SIDM would thus point towards the more exotic
candidates postulated by particle physicists, particularly those which are not point particles but
instead comprise of extended objects such as Q-balls. A measurement of the scattering cross-
section would also place an upper bound on the mass of the dark matter particle, since unitarity
of the scattering matrix forbids extremely large cross sections [463], i.e.,

2 _ 2
10km 51
Gior < 1.76 x 1077 cm® (Gev> < Okm 5 ) (2.5.1)

my Urel

2.5.2 Dark matter—baryonic interactions

Currently, a number of efforts are underway to directly detect WIMPs via the recoil of atomic
nuclei. The underground experiments such as CDMS, CRESST, XENON, EDELWEISS and
ZEPLIN have pushed observational limits for the spin-independent WIMP-nucleon cross-section
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4 A collection of the latest constraints can be found at

down to the o < 10~*3cm? régime.
http://dmtools.brown.edu.
Another opportunity to unearth the dark matter particle lies in accelerators such as the LHC. By
2018 it is possible these experiments will have yielded mass estimates for dark matter candidates,
provided its mass is lighter than a few hundred GeV. However, the discovery of more detailed
properties of the particle, which are essential to confirm the link to cosmological dark matter,

would have to wait until the International Linear Collider is constructed.

2.5.3 Dark matter—dark energy interactions

Interactions in the dark sector have provided a popular topic for exploration, with a view to
building models which alleviate the coincidence and fine-tuning issues associated with dark energy
(see Section 1.4.4). The great uncertainty surrounding the physical nature of dark energy leaves
plenty of scope for non-gravitational physics to play a role. These models are discussed at length
in other sections of this review (1.4 and 2.11). Here, we only mention that [837] have explored the
phenomenology associated with dark matter scattering elastically with dark energy. The growth
rate of large-scale structures is artificially slowed, allowing a modest constraint of

0,
. 2.5.2
1w ™8 (2.5.2)

op/mp S

It is clear that such dark sector interactions do not arise in the simplest models of dark matter
and dark energy. However a rigorous refutation of GR will require not only a robust measure of
the growth of cosmic structures, but confirmation that the anomalous dynamics are not simply
due to physics within the dark sector.

2.6 Cross-section constraints from galaxy clusters

Clusters of galaxies present an interesting environment in which the dark matter density is high
and where processes such as collisions present the possibility of distinguishing dark matter from
baryonic matter as the two components interact differently. For instance, particulate dark matter
and baryonic matter may be temporarily separated during collisions between galaxy clusters, such
as 1E 0657-56 [244, 164] and MACS J0025.4-1222 [162]. These ‘bullet clusters’ have provided
astrophysical constraints on the interaction cross-section of hypothesized dark matter particles
[750], and may ultimately prove the most useful laboratory in which to test for any velocity
dependence of the cross-section. Unfortunately, the contribution of individual systems is limited
by uncertainties in the collision velocity, impact parameter and angle with respect to the plane
of the sky. Current constraints are three orders of magnitude weaker than constraints from the
shapes of haloes [361] and, since collisions between two massive progenitors are rare [318, 819], the
total observable number of such systems may be inadequate to investigate a physically interesting
regime of dark matter properties.

Current constraints from bullet clusters on the cross-section of particulate dark matter are ~ 18
orders of magnitude larger than that required to distinguish between plausible particle-physics dark
matter candidates (for example from supersymmetric extensions to the standard model). In order
to investigate a physically interesting régime of dark matter cross-section, and provide smaller
error bars, many more individual bullet clusters are required. However collisions between two
massive progenitors are rare and ultimately the total observable number of such systems may be
inadequate.

1 Tt is anyway worth noticing the controversial results of DAMA /LIBRA, and more recently of CoGeNT.
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2.6.1 Bulleticity

In [643], a method for using every individual infalling substructure in every cluster has been pro-
posed. For each piece of infalling substructure, a local vector from the dark matter peak (identified
using weak lensing analysis) and the baryonic mass peak (from X-rays) — dubbed ‘bulleticity’ —
can be defined

b = b.é, + bsé;, (2.6.1)

where the radial b, and azimuthal b; components are defined relative to unit vector towards the
cluster center and tangentially and b = |b|. An integrated bulleticity signal of zero would imply
an equal cross sections for the dark matter and baryonic matter. By measuring the amplitude of
the bulleticity one can empirically measure the ratio between the dark matter and baryonic cross
sections.

In Figure 35 a result from full hydrodynamical simulations of dark and baryonic matter within
clusters in shown. [643] have used these simulations to show that the measurement of a net
bulleticity consistent with the cold dark matter used in the simulations is possible.

Finally, a Fisher matrix calculation has shown that, under the assumption that systematic
effects can be controlled, Euclid could use such a technique to constrain the relative particulate
cross-sections to 6 x 10727 cm? GeV ™!,

The raw bulleticity measurement would constrain the relative cross-sections of the baryon-
baryon interaction and the dark matter-dark matter interaction. However, since we know the
baryonic cross-section relatively well, we can infer the dark matter-dark matter cross-section. The
dark matter-dark matter interaction probed by Euclid using this technique will be complementary
to the interactions constrained by direct detection and accelerator experiments where the primary
constraints will be on the dark matter-baryon interaction.

2.7 Constraints on warm dark matter

N-body simulations of large-scale structures that assume a ACDM cosmology appear to over-
predict the power on small scales when compared to observations [744]: ‘the missing-satellite
problem’ [494, 511, 869, 188], the ‘cusp-core problem’ [568, 833, 974] and sizes of mini-voids [888].
These problems may be more or less solved by several different phenomena [e.g. 310], however one
which could explain all of the above is warm dark matter (WDM) [143, 248, 159]. If the dark
matter particle is very light, it can cause a suppression of the growth of structures on small scales
via free-streaming of the dark matter particles whilst relativistic in the early universe.

2.7.1 Warm dark matter particle candidates

Numerous WDM particle models can be constructed, but there are two that occur most com-
monly in literature, because they are most plausible from particle physics theory as well as from
cosmological observations:

e Sterile neutrinos may be constructed to extend the standard model of particle physics. The
standard model active (left-handed) neutrinos can then receive the observed small masses
through, e.g., a see-saw mechanism. This implies that right-handed sterile neutrinos must be
rather heavy, but the lightest of them naturally has a mass in the keV region, which makes
it a suitable WDM candidate. The simplest model of sterile neutrinos as WDM candidate
assumes that these particles were produced at the same time as active neutrinos, but they
never thermalized and were thus produced with a much reduced abundance due to their weak
coupling [see 1306, and references therein].
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Figure 35: Full hydrodynamical simulations of massive clusters at redshift z = 0.6. Total projected mass
is shown in blue, while X-ray emission from baryonic gas is in red. The preferential trailing of gas due to
pressure from the ICM, and its consequent separation from the non interacting dark matter, is apparent
in much of the infalling substructure.
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e The gravitino appears as the supersymmetric partner of the graviton in supergravity models.
If it has a mass in the keV range, it will be a suitable WDM candidate. It belongs to a
more general class of thermalized WDM candidates. It is assumed that this class of particles
achieved a full thermal equilibrium, but at an earlier stage, when the number of degrees of
freedom was much higher and hence their relative temperature with respect to the CMB is
much reduced. Note that in order for the gravitino to be a good dark matter particle in
general, it must be very stable, which in most models corresponds to it being the LSP [e.g.

151, 221].
Other possible WDM candidates exist, for example a non-thermal neutralino [438] or a non-thermal

gravitino [82] etc.

2.7.2 Dark matter free-streaming

The modification of the shape of the linear-theory power spectrum of CDM due to WDM can be
calculated by multiplication by a transfer function [143]

Pwpwm (k) 2u1—5/n
Tk)= 4| ———=% = [1+ (ak)* , 2.7.1
(k) Poon (F) [1+ (ak)™] (2.7.1)
with suitable parameter y = 1.12 [929] and with the scale break parameter, « in the case of thermal
relic DM 011 L9
mwpmM\ 1 Qwpw h """
0049 ) ! Mpe. 2.7.2
@ =000y ) ( 0.25 0.7 be (272)

This is a fit to the solution of the full Boltzman equations.

There is a one-to-one relation between the mass of the thermalized WDM particle mwpwm (e.g.,
gravitino), and the mass of the simplest sterile neutrino m,s, such that the two models have an
identical impact on cosmology [929]

b\ (won ) 273)

e = 4.43
m ( keV 0.1225

where w = Qh%. The difference comes from the fact that in the gravitino case the particle is fully
thermalized, the number of effective degrees of freedom being determined by mass and energy
density of dark matter, while in the simplest sterile neutrino case the number of degrees of freedom
is fixed, while abundance is determined by mass and energy density of dark matter.

In order to extrapolate the matter power spectrum to later times one must take into account
the nonlinear evolution of the matter density field. This is not straightforward in the WDM case
[630] and most likely needs to be explored through further simulations [974].

2.7.3 Current constraints on the WDM particle from large-scale struc-
ture

Measurements in the particle-physics energy domain can only reach masses uninteresting in the
WDM context, since direct detectors look mainly for a WIMP, whose mass should be in the GeV —
TeV range. However, as described above, cosmological observations are able to place constraints on
light dark matter particles. Observation of the flux power spectrum of the Lyman-«a forest, which
can indirectly measure the fluctuations in the dark matter density on scales between ~ 100 kpc
and ~ 10 Mpc gives the limits of mwpy > 4 keV or equivalently m,s > 28 keV at 95% confidence
level [927, 929, 812]. For the simplest sterile neutrino model; these lower limits are at odds with
the upper limits derived from X-ray observations, which come from the lack of observed diffuse
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X-ray background from sterile neutrino annihilation and set the limit m,s < 1.8 keV at the 95%
confidence limit [161]. However, these results do not rule the simplest sterile neutrino models out.
There exist theoretical means of evading small-scale power constraints [see e.g. 160, and references
therein|. The weak lensing power spectrum from Euclid will be able to constrain the dark matter
particle mass to about mwpm > 2 keV [630].

2.8 Neutrino properties

The first significant evidence for a finite neutrino mass [373] indicated the incompleteness of the
standard model of particle physics. Subsequent experiments have further strengthened this evi-
dence and improved the determination of the neutrino mass splitting required to explain observa-
tions of neutrino oscillations.

As a summary of the last decade of neutrino experiments, two hierarchical neutrino mass
splittings and three mixing angles have been measured. Furthermore, the standard model has
three neutrinos: the motivation for considering deviations from the standard model in the form
of extra sterile neutrinos has disappeared [655, 13]. Of course, deviations from the standard
effective numbers of neutrino species could still indicate exotic physics which we will discuss below
(Section 2.8.4).

New and future neutrino experiments aim to determine the remaining parameters of the neu-
trino mass matrix and the nature of the neutrino mass. Within three families of neutrinos, and
given all neutrino oscillation data, there are three possible mass spectra: a) degenerate, with mass
splitting smaller than the neutrino masses, and two non-degenerate cases, b) normal hierarchy
(NH), with the larger mass splitting between the two more massive neutrinos and c) inverted hi-
erarchy (IH), with the smaller spitting between the two higher mass neutrinos. Figure 36 [480]
illustrates the currently allowed regions in the plane of total neutrino mass, ¥, vs. mass of the
lightest neutrino, m. Note that a determination of ¥ < 0.1 eV would indicate normal hierarchy
and that there is an expected minimum mass ¥ > 0.054 eV. The cosmological constraint is from
[762].

Cosmological constraints on neutrino properties are highly complementary to particle physics
experiments for several reasons:

e Relic neutrinos produced in the early universe are hardly detectable by weak interactions,
making it impossible with foreseeable technology to detect them directly. But new cosmolog-
ical probes such as Euclid offer the opportunity to detect (albeit indirectly) relic neutrinos,
through the effect of their mass on the growth of cosmological perturbations.

e Cosmology remains a key avenue to determine the absolute neutrino mass scale.
Particle physics experiments will be able to place lower limits on the effective neutrino mass,
which depends on the hierarchy, with no rigorous limit achievable in the case of normal
hierarchy [680]. Contrarily, neutrino free streaming suppresses the small-scale clustering of
large-scale cosmological structures by an amount that depends on neutrino mass.

e “What is the hierarchy (normal, inverted or degenerate)?” Neutrino oscillation data
are unable to resolve whether the mass spectrum consists in two light states with mass m and a
heavy one with mass M — normal hierarchy — or two heavy states with mass M and a light one
with mass m — inverted hierarchy — in a model-independent way. Cosmological observations,
such as the data provided by Euclid, can determine the hierarchy, complementarily to data
from particle physics experiments.

e “Are neutrinos their own anti-particle?” If the answer is yes, then neutrinos are
Majorana fermions; if not, they are Dirac. If neutrinos and anti-neutrinos are identical,
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Figure 36: Constraints from neutrino oscillations and from cosmology in the m-X plane. Image repro-
duced by permission from [480]; copyright by IOP and SISSA.

there could have been a process in the early universe that affected the balance between
particles and anti-particles, leading to the matter anti-matter asymmetry we need to exist
[374]. This question can, in principle, be resolved if neutrino-less double-3 decay is observed
[see 680, and references therein]. However, if such experiments [ongoing and planned, e.g.,
265] lead to a negative result, the implications for the nature of neutrinos depend on the
hierarchy. As shown in [480], in this case cosmology can offer complementary information by
helping determine the hierarchy.

2.8.1 Evidence of relic neutrinos

The hot big bang model predicts a background of relic neutrinos in the universe with an average
number density of ~ 100 N, cm~3, where N, is the number of neutrino species. These neutrinos
decouple from the CMB at redshift z ~ 10’ when the temperature was 7' ~ o(MeV), but remain
relativistic down to much lower redshifts depending on their mass. A detection of such a neutrino
background would be an important confirmation of our understanding of the physics of the early
universe.

Massive neutrinos affect cosmological observations in different ways. Primary CMB data alone
can constrain the total neutrino mass ¥, if it is above ~ 1 eV [526, finds ¥ < 1.3 eV at 95% confi-
dence] because these neutrinos become non-relativistic before recombination leaving an imprint in
the CMB. Neutrinos with masses ¥ < 1 eV become non-relativistic after recombination altering
matter-radiation equality for fixed ©,,h?; this effect is degenerate with other cosmological param-
eters from primary CMB data alone. After neutrinos become non-relativistic, their free streaming
damps the small-scale power and modifies the shape of the matter power spectrum below the
free-streaming length. The free-streaming length of each neutrino family depends on its mass.

Current cosmological observations do not detect any small-scale power suppression and break
many of the degeneracies of the primary CMB, yielding constraints of ¥ < 0.3 eV [762] if we
assume the neutrino mass to be a constant. A detection of such an effect, however, would provide
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a detection, although indirect, of the cosmic neutrino background. As shown in the next section,
the fact that oscillations predict a minimum total mass ¥ ~ 0.054 eV implies that Euclid has the
statistical power to detect the cosmic neutrino background. We finally remark that the neutrino
mass may also very well vary in time [957]; this might be tested by comparing (and not combining)
measurements from CMB at decoupling with low-z measurements. An inconsistency would point
out a direct measurement of a time varying neutrino mass [959].

2.8.2 Neutrino mass

Particle physics experiments are sensitive to neutrino flavours making a determination of the
neutrino absolute-mass scales very model dependent. On the other hand, cosmology is not sensitive
to neutrino flavour, but is sensitive to the total neutrino mass.

The small-scale power-suppression caused by neutrinos leaves imprints on CMB lensing: fore-
casts indicate that Planck should be able to constrain the sum of neutrino masses X, with a lo
error of 0.13 eV [491, 557, 289].

Euclid’s measurement of the galaxy power spectrum, combined with Planck (primary CMB
only) priors should yield an error on X of 0.04 eV [for details see 211] which is in qualitative
agreement with previous work [e.g. 779]), assuming a minimal value for ¥ and constant neutrino
mass. Euclid’s weak lensing should also yield an error on ¥ of 0.05 eV [507]. While these two
determinations are not fully independent (the cosmic variance part of the error is in common given
that the lensing survey and the galaxy survey cover the same volume of the universe) the size
of the error-bars implies more than 1o detection of even the minimum ¥ allowed by oscillations.
Moreover, the two independent techniques will offer cross-checks and robustness to systematics.
The error on ¥ depends on the fiducial model assumed, decreasing for fiducial models with larger
Y. Euclid will enable us not only to detect the effect of massive neutrinos on clustering but also
to determine the absolute neutrino mass scale.

2.8.3 Hierarchy and the nature of neutrinos

Since cosmology is insensitive to flavour, one might expect that cosmology may not help in deter-
mining the neutrino mass hierarchy. However, for ¥ < 0.1 eV, only normal hierarchy is allowed,
thus a mass determination can help disentangle the hierarchy. There is however another effect:
neutrinos of different masses become non-relativistic at slightly different epochs; the free streaming
length is sightly different for the different species and thus the detailed shape of the small scale
power suppression depends on the individual neutrino masses and not just on their sum. As dis-
cussed in [480], in cosmology one can safely neglect the impact of the solar mass splitting. Thus,
two masses characterize the neutrino mass spectrum: the lightest m, and the heaviest M. The
mass splitting can be parameterized by A = (M —m) /X for normal hierarchy and A = (m—M) /%
for inverted hierarchy. The absolute value of A determines the mass splitting, whilst the sign of A
gives the hierarchy. Cosmological data are very sensitive to |A|; the direction of the splitting — i.e.,
the sign of A — introduces a sub-dominant correction to the main effect. Nonetheless, [480] show
that weak gravitational lensing from Euclid data will be able to determine the hierarchy (i.e., the
mass splitting and its sign) if far enough away from the degenerate hierarchy (i.e., if ¥ < 0.13).

A detection of neutrino-less double-3 decay from the next generation experiments would in-
dicate that neutrinos are Majorana particles. A null result of such double-3 decay experiments
would lead to a definitive result pointing to the Dirac nature of the neutrino only for degenerate or
inverted mass spectrum. This information can be obtained from large-scale structure cosmological
data, improved data on the tritium beta decay, or the long-baseline neutrino oscillation experi-
ments. If the small mixing in the neutrino mixing matrix is negligible, cosmology might be the
most promising arena to help in this puzzle.
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Figure 37: Left: region in the A-Y parameter space allowed by oscillations data. Right: Weak lensing
forecasts. The dashed and dotted vertical lines correspond to the central value for A given by oscillations
data. In this case Euclid could discriminate NI from IH with a Ax? = 2. Image reproduced by permission
from [480]; copyright by IOP and SISSA.

2.8.4 Number of neutrino species

Neutrinos decouple early in cosmic history and contribute to a relativistic energy density with
an effective number of species N, .g = 3.046. Cosmology is sensitive to the physical energy
density in relativistic particles in the early universe, which in the standard cosmological model
includes only photons and neutrinos: wyel = wy + N, cfw,, Where w, denotes the energy density
in photons and is exquisitely constrained from the CMB, and w, is the energy density in one
neutrino. Deviations from the standard value for N, ¢ would signal non-standard neutrino features
or additional relativistic species. N, .¢ impacts the big bang nucleosynthesis epoch through its
effect on the expansion rate; measurements of primordial light element abundances can constrain
N, e and rely on physics at T ~ MeV [158]. In several non-standard models — e.g., decay of
dark matter particles, axions, quintessence — the energy density in relativistic species can change
at some later time. The energy density of free-streaming relativistic particles alters the epoch of
matter-radiation equality and leaves therefore a signature in the CMB and in the matter-transfer
function. However, there is a degeneracy between N, .g and Q,,h? from CMB data alone (given
by the combination of these two parameters that leave matter-radiation equality unchanged) and
between N, ¢ and og and/or ns. Large-scale structure surveys measuring the shape of the power
spectrum at large scale can constrain independently the combination €2,,h and n,, thus breaking
the CMB degeneracy. Furthermore, anisotropies in the neutrino background affect the CMB
anisotropy angular power spectrum at a level of ~ 20% through the gravitational feedback of
their free streaming damping and anisotropic stress contributions. Detection of this effect is now
possible by combining CMB and large-scale structure observations. This yields an indication at
more than 20 level that there exists a neutrino background with characteristics compatible with
what is expected under the cosmological standard model [901, 285].

The forecasted errors on N, g for Euclid (with a Planck prior) are £0.1 at 1o level [507], which
is a factor ~ 5 better than current constraints from CMB and LSS and about a factor ~ 2 better
than constraints from light element abundance and nucleosynthesis.
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2.8.5 Model dependence

A recurring question is how much model dependent will the neutrino constraints be. It is important
to recall that usually parameter-fitting is done within the context of a ACDM model and that the
neutrino effects are seen indirectly in the clustering. Considering more general cosmological models,
might degrade neutrino constraints, and vice versa, including neutrinos in the model might degrade
dark-energy constraints. Here below we discuss the two cases of varying the total neutrino mass
>} and the number of relativistic species Neg, separately.

2.8.6 Y forecasted error bars and degeneracies

In [211] it is shown that, for a general model which allows for a non-flat universe, and a redshift
dependent dark-energy equation of state, the 1o spectroscopic errors on the neutrino mass X are
in the range 0.036—0.056 eV, depending on the fiducial total neutrino mass ¥, for the combination
Euclid+Planck.

On the other hand, looking at the effect that massive neutrinos have on the dark-energy pa-
rameter constraints, it is shown that the total CMB+LSS dark-energy FoM decreases only by
~ 15% —25% with respect to the value obtained if neutrinos are supposed to be massless, when the
forecasts are computed using the so-called “P(k)-method marginalized over growth-information”
(see Methodology section), which therefore results to be quite robust in constraining the dark-
energy equation of state.

For what concerns the parameter correlations, at the LSS level, the total neutrino mass %
is correlated with all the cosmological parameters affecting the galaxy power spectrum shape and
BAO positions. When Planck priors are added to the Euclid constraints, all degeneracies are either
resolved or reduced, and the remaining dominant correlations among Y. and the other cosmological
parameters are X-Q4e, -, and 3-w,, with the ¥-Q4, degeneracy being the largest one.

2.8.6.1 Hierarchy dependence

In addition, the neutrino mass spectroscopic constraints depend also on the neutrino hierarchy. In
fact, the 1o errors on total neutrino mass for normal hierarchy are ~ 17%—20% larger than for
the inverted one. It appears that the matter power spectrum is less able to give information on
the total neutrino mass when the normal hierarchy is assumed as fiducial neutrino mass spectrum.
This is similar to what found in [480] for the constraints on the neutrino mass hierarchy itself, when
a normal hierarchy is assumed as the fiducial one. On the other hand, when CMB information are
included, the Y-errors decrease by ~ 35% in favor of the normal hierarchy, at a given fiducial value
Y|ga. This difference arises from the changes in the free-streaming effect due to the assumed mass
hierarchy, and is in agreement with the results of [556], which confirms that the expected errors
on the neutrino masses depend not only on the sum of neutrino masses, but also on the order of
the mass splitting between the neutrino mass states.

2.8.6.2 Growth and incoherent peculiar velocity dependence

3 spectroscopic errors stay mostly unchanged whether growth-information are included or mar-
ginalised over, and decrease only by 10% —-20% when adding f;os measurements. This result
is expected, if we consider that, unlike dark-energy parameters, X affects the shape of the power
spectrum via a redshift-dependent transfer function T'(k, z), which is sampled on a very large range
of scales including the P(k) turnover scale, therefore this effect dominates over the information
extracted from measurements of f;os. This quantity, in turn, generates new correlations with X
via the og-term, which actually is anti-correlated with M, [641]. On the other hand, if we suppose
that early dark-energy is negligible, the dark-energy parameters (40, wo and w, do not enter the
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transfer function, and consequently growth information have relatively more weight when added
to constraints from H(z) and D4(z) alone. Therefore, the value of the dark-energy FoM does
increase when growth-information are included, even if it decreases by a factor ~ 50% —60% with
respect to cosmologies where neutrinos are assumed to be massless, due to the correlation among
> and the dark-energy parameters. As confirmation of this degeneracy, when growth-information
are added and if the dark-energy parameters Q4e, wg, w, are held fixed to their fiducial values,
the errors o(X) decrease from 0.056 eV to 0.028 eV, for Euclid combined with Planck.

We expect that dark-energy parameter errors are somewhat sensitive also to the effect of inco-
herent peculiar velocities, the so-called “Fingers of God” (FoG). This can be understood in terms
of correlation functions in the redshift-space; the stretching effect due to random peculiar velocities
contrasts the flattening effect due to large-scale bulk velocities. Consequently, these two competing
effects act along opposite directions on the dark-energy parameter constraints (see methodology
Section 5).

On the other hand, the neutrino mass errors are found to be stable again at o(X) = 0.056, also
when FoG effects are taken into account by marginalising over o,(2); in fact, they increase only
by 10% —14% with respect to the case where FoG are not taken into account.

Finally, in Table 18 we summarize the dependence of the Y-errors on the model cosmology, for
Euclid combined with Planck.!> We conclude that, if ¥ is > 0.1 eV, spectroscopy with Euclid will
be able to determine the neutrino mass scale independently of the model cosmology assumed. If
3 is < 0.1 eV, the sum of neutrino masses, and in particular the minimum neutrino mass required
by neutrino oscillations, can be measured in the context of a ACDM model.

2.8.7 N, forecasted errors and degeneracies

Regarding the Neg spectroscopic errors, [211] finds o(Neg) ~ 0.56 from Euclid, and o(Neg) ~
0.086, for Euclid+Planck. Concerning the effect of N.g uncertainties on the dark-energy param-
eter errors, the CMB+LSS dark-energy FoM decreases only by ~ 5% with respect to the value
obtained holding Neg fixed at its fiducial value, meaning that also in this case the “P(k)-method
marginalized over growth—information” is not too sensitive to assumptions about model cosmology
when constraining the dark-energy equation of state.

About the degeneracies between N.g and the other cosmological parameters, it is necessary to
say that the number of relativistic species gives two opposite contributions to the observed power
spectrum P,ps (see methodology Section 5), and the total sign of the correlation depends on the
dominant one, for each single cosmological parameter. In fact, a larger Nog value suppresses the
transfer function T'(k) on scales k < kpax. On the other hand, a larger Nog value also increases
the Alcock—Paczynski prefactor in P,ps. For what concerns the dark-energy parameters Qq4e, wo,
wg, and the dark-matter density §2,,, the Alcock—Paczynski prefactor dominates, so that Neg is
positively correlated to 4. and w,, and anti-correlated to €2, and wg. In contrast, for the other
parameters, the T'(k) suppression produces the larger effect and Neg results to be anti-correlated to
€y, and positively correlated to h and ng. The degree of the correlation is very large in the ng,-Neg
case, being of the order ~ 0.8 with and without Planck priors. For the remaining cosmological
parameters, all the correlations are reduced when CMB information are added, except for the
covariance Neg-S4e, as happens also for the M, -correlations. To summarize, after the inclusion
of Planck priors, the remaining dominant degeneracies among N.g and the other cosmological
parameters are Neg-ns, Neg-Qde, and Neg-h, and the forecasted error is o(Neg) ~ 0.086, from
Euclid+Planck. Finally, if we fix to their fiducial values the dark-energy parameters 24e, wo and
Wq, 0(Negr) decreases from 0.086 to 0.048, for the combination Euclid+Planck.

15 In this case we have added the contribution from BOSS at redshifts 0.1 < z < zmin, Where zpi, = 0.5 is the
minimum redshift of the Euclid spectroscopic survey.
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Table 18: o(M,) and o(Neg) marginalized errors from LSS+CMB

General cosmology

fiducial — Y =0.3eVe X =0.2eV® X =0125eV® ¥ =0.125eV¢ ¥ =0.05eV® Neg = 3.04¢

EUCLID+Planck  0.0361 0.0458 0.0322 0.0466 0.0563 0.0862
ACDM cosmology

EUCLID+Planck  0.0176 0.0198 0.0173 0.0218 0.0217 0.0224

% for degenerate spectrum: mj &~ ma ~ mga; ? for normal hierarchy: m3 # 0, m1 ~ ma ~ 0
¢ for inverted hierarchy: m; & ma, ms ~ 0; ¢ fiducial cosmology with massless neutrinos

2.8.8 Nonlinear effects of massive cosmological neutrinos on bias and
RSD

In general, forecasted errors are obtained using techniques, like the Fisher-matrix approach, that are
not particularly well suited to quantify systematic effects. These techniques forecast only statistical
errors, which are meaningful as long as they dominate over systematic errors. Therefore, it is
important to consider sources of systematics and their possible effects on the recovered parameters.
Possible sources of systematic errors of major concern are the effect of nonlinearities and the effects
of galaxy bias.

The description of nonlinearities in the matter power spectrum in the presence of massive
neutrinos has been addressed in several different ways: [966, 779, 778, 780] have used perturbation
theory, [555] the time-RG flow approach and [167, 166, 168, 928] different schemes of N-body
simulations. Another nonlinear scheme that has been examined in the literature is the halo model.
This has been applied to massive neutrino cosmologies in [1, 421, 422].

On the other hand, galaxy/halo bias is known to be almost scale-independent only on large,
linear scales, but to become nonlinear and scale-dependent for small scales and/or for very massive
haloes. From the above discussion and references, it is clear that the effect of massive neutrinos
on the galaxy power spectrum in the nonlinear regime must be explored via N-body simulations
to encompass all the relevant effects.

Here below we focus on the behavior of the DM-halo mass function (MF), the DM-halo bias,
and the redshift-space distortions (RSD), in the presence of a cosmological background of massive
neutrinos. To this aim, [168] and [641] have analysed a set of large N-body hydrodynamical
simulations, developed with an extended version of the code GADGET-3 [928], which take into
account the effect of massive free-streaming neutrinos on the evolution of cosmic structures.

The pressure produced by massive neutrino free-streaming contrasts the gravitational collapse
which is the basis of cosmic structure formation, causing a significant suppression in the average
number density of massive structures. This effect can be observed in the high mass tail of the halo
MF in Figure 38, as compared with the analytic predictions of [824] (ST), where the variance in the
density fluctuation field, o(M), has been computed via CAMB [559], using the same cosmological
parameters of the simulations. In particular, here the MF of sub-structures is shown, identified
using the SUBFIND package [858], while the normalization of the matter power spectrum is fixed
by the dimensionless amplitude of the primordial curvature perturbations A%(lﬂo”ﬁd =2.3x1077,
evaluated at a pivot scale kg = 0.002/Mpc [548], which has been chosen to have the same value
both in the ACDMvr and in the ACDM cosmologies.

In Figures 38 and 39, two fiducial neutrino masses have been considered, > = 0.3 and X =
0.6 eV. From the comparison of the corresponding MFs, we confirm the theoretical predictions,
i.e., that the higher the neutrino mass is, the larger the suppression in the comoving number density
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of DM haloes becomes.

As is well known, massive neutrinos also strongly affect the spatial clustering of cosmic struc-
tures. A standard statistics generally used to quantify the degree of clustering of a population of
sources is the two-point auto-correlation function. Although the free-streaming of massive neu-
trinos causes a suppression of the matter power spectrum on scales k larger than the neutrino
free-streaming scale, the halo bias is significantly enhanced. This effect can be physically ex-
plained thinking that, due to neutrino structure suppression, the same halo bias would correspond,
in a ACDM cosmology, to more massive haloes (than in a ACDMwv cosmology), which as known
are typically more clustered.

This effect is evident in Figure 39 which shows the two-point DM-halo correlation function
measured with the Landy and Szalay [541] estimator, compared to the matter correlation function.
In particular, the clustering difference between the ACDM and ACDMv cosmologies increases at
higher redshifts, as it can be observed from Figures 40 and 41 and the windows at redshifts z > 0
of Figure 38. Note also the effect of nonlinearities on the bias, which clearly starts to become
scale-dependent for separations r < 20 Mpc/h.

As it happens for the MF and clustering, also RSD are strongly affected by massive neutrinos.
Figure 42 shows the real and redshift space correlation functions of DM haloes as a function of the
neutrino mass. The effect of massive neutrinos is particularly evident when the correlation function
is measured as a function of the two directions perpendicular and parallel to the line of sight. As a
consequence, the value of the linear growth rate that can be derived by modelling galaxy clustering
anisotropies can be greatly suppressed with respect to the value expected in a ACDM cosmology.
Indeed, neglecting the cosmic relic massive neutrino background in data analysis might induce a
bias in the inferred growth rate, from which a potentially fake signature of modified gravity might
be inferred. Figure 43 demonstrates this point, showing the best-fit values of 8 and o012, as a
function of ¥ and redshift, where 8 = f(bLfI:I), ber being the halo effective linear bias factor, f(Qu)
the linear growth rate and o192 the pairwﬁse velocity dispersion.

2.9 Coupling between dark energy and neutrinos

As we have seen in Section 1.4.4, it is interesting to consider the possibility that dark energy, seen
as a dynamical scalar field (quintessence), may interact with other components in the universe.
In this section we focus on the possibility that a coupling may exist between dark energy and
neutrinos.

The idea of such a coupling has been addressed and developed by several authors within MaVaNs
theories first [356, 714, 135, 12, 952, 280, 874, 856, 139, 178, 177] and more recently within growing
neutrino cosmologies [36, 957, 668, 963, 962, 727, 179]. It has been shown that neutrinos can play
a crucial role in cosmology, setting naturally the desired scale for dark energy. Interestingly, a
coupling between neutrinos and dark energy may help solving the ‘why now’ problem, explaining
why dark energy dominates only in recent epochs. The coupling follows the description illustrated
in Section 1.4.4 for a general interacting dark-energy cosmology, where now m, = m,(¢).

Typically, in growing neutrino cosmologies, the function m, (¢) is such that the neutrino mass
grows with time from low, nearly massless values (when neutrinos are non-relativistic) up to present
masses in a range in agreement with current observations (see the previous section of this review
for latest bounds on neutrino masses). The key feature of growing neutrino models is that the
amount of dark energy today is triggered by a cosmological event, corresponding to the transition
from relativistic to non-relativistic neutrinos at redshift zxg ~ 5 + 10. As long as neutrinos are
relativistic, the coupling plays no role on the dynamics of the scalar field, which follows attractor
solutions of the type described in Section 1.4.4. From there on, the evolution of dark energy
resembles that of a cosmological constant, plus small oscillations of the coupled dark energy-
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Figure 38: DM halo mass function (MF) as a function of ¥ and redshift. MF of the SUBFIND haloes
in the ACDM N-body simulation (blue circles) and in the two simulations with ¥ = 0.3 eV (magenta
triangles) and ¥ = 0.6 eV (red squares). The blue, magenta and red lines show the halo MF predicted by
[824], where the variance in the density fluctuation field, o(M), at the three cosmologies, ¥ = 0,0.3,0.6 eV,
has been computed with the software CAMB [559)].
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Figure 39: DM halo mass function (MF) as a function of ¥ and redshift. Real space two-point auto-
correlation function of the DM haloes in the ACDM N-body simulation (blue circles) and in the simulation
with ¥ = 0.6 eV (red squares). The blue and red lines show the DM correlation function computed using
the CAMB matter power spectrum with ¥ = 0 and X = 0.6 eV, respectively. The bottom panels show
the ratio between the halo correlation function extracted from the simulations with and without massive
neutrinos.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2013-6


http://www.livingreviews.org/lrr-2013-6

146

Luca Amendola et al. (The Euclid Theory Working Group)

( ghalo/gDM) 0o

b

<$halo/gDM) 0o

b

1.6

1.4

1.2

0.8

0.6

2.5

1.5

L B R N R R R

10

20 30 4050
r [Mpc/h]

z=1

10

20 30 4050
r [Mpc/h]

2.5

( ghalo/gDM) 0o

b

<$halo/$DM) 0o

F T T T [ T T[T
C Z:O.Gi
L [ \‘\\\\‘HH‘HH‘H;
10 <0 30 4030

r [Mpe/h]
T T T [ T T[T
z=2 ]

L 1
Fo* s z F 4]
L% & L I e 6
j Il ‘ Il Il Il \‘\\\\‘HH‘HH‘\F
10 20 30 4050
r [Mpc/h]

Figure 40: Real space two-point auto-correlation function of the DM haloes in the ACDM N-body
simulation (blue circles) and in the simulation with ¥ = 0.6 eV (red squares). The blue and red lines show
the DM correlation function computed using the CAMB matter power spectrum with ¥ = 0 and ¥ = 0.6 eV,
respectively. The bottom panels show the ratio between the halo correlation function extracted from the
simulations with and without massive neutrinos.
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Figure 41: Mean bias (averaged in 10 < r [Mpc/h] < 50) as a function of redshift compared with the
theoretical predictions of [824]. Here the dashed lines represent the theoretical expectations for a ACDM
cosmology renormalized with the og value of the simulations with a massive neutrino component.
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Figure 42: Two-point auto-correlation function in real and redshift space of the DM-haloes in the ACDM
N-body simulation (blue circles) and in the simulation with ¥ = 0.6 eV (red squares). The bottom panels
show the ratio between them, compared with the theoretical expectation.
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neutrino fluid. As a consequence, when a coupling between dark energy and neutrinos is active,
the amount of dark energy and its equation of state today are strictly connected to the present
value of the neutrino mass.

The interaction between neutrinos and dark energy is a nice and concrete example of the
significant imprint that dynamical coupled dark energy can leave on observables and in particular
on structure formation and on the cosmic microwave background. This is due to the fact that
the coupling, playing a role only after neutrinos become non-relativistic, can reach relatively high
values as compared to gravitational attraction. Typical values of § are order 50 + 100 or even
more such that even the small fraction of cosmic energy density in neutrinos can have a substantial
influence on the time evolution of the quintessence field. During this time the fifth force can be
of order 10? + 10* times stronger than gravity. The neutrino contribution to the gravitational
potential influences indirectly also dark matter and structure formation, as well as CMB, via the
Integrated Sachs—Wolfe effect and the nonlinear Rees—Sciama effect, which is non-negligible at
the scales where neutrinos form stable lumps. Furthermore, backreaction effects can substantially
modify the growth of large scale neutrino lumps, with effects which are much larger than in the
dark matter case. The presence of a fifth force due to an interaction between neutrinos and dark
energy can lead to remarkably peculiar differences with respect to a cosmological constant scenario.

Here, we just recall some of the typical features that can arise when such an interaction is
active:

e existence of very large structures, order 10 + 500 Mpec [12, 668, 963, 962, 727];

e cnhanced ISW effect, drastically reduced when taking into account nonlinearities [727]: in-
formation on the gravitational potential is a good mean to constrain the range of allowed
values for the coupling f;

e large-scale anisotropies and enhanced peculiar velocities [947, 69];

e the influence of the gravitational potential induced by the neutrino inhomogeneities can affect
BAO in the dark-matter spectra [179].

Investigation of structure formation at very large scales (order 1 =+ 100 Mpc) as well as cross
correlation with CMB are crucial in order to disentangle coupled neutrino-quintessence cosmologies
from a cosmological constant scenario. Detection of a population of very large-scale structures could
pose serious difficulties to the standard framework and open the way to the existence of a new
cosmological interaction stronger than gravity.

2.10 Unified Dark Matter

The appearance of two unknown components in the standard cosmological model, dark matter
and dark energy, has prompted discussion of whether they are two facets of a single underlying
dark component. This concept goes under the name of quartessence [615], or unified dark matter
(UDM). A priori this is attractive, replacing two unknown components with one, and in principle
it might explain the ‘why now?’ problem of why the energy densities of the two components
are similar (also referred to as the coincidence problem). Many UDM models are characterized
by a sound speed, whose value and evolution imprints oscillatory features on the matter power
spectrum, which may be detectable through weak lensing or BAO signatures with Euclid.

The field is rich in UDM models [see 128, for a review and for references to the literature].
The models can grow structure, as well as providing acceleration of the universe at late times. In
many cases, these models have a non-canonical kinetic term in the Lagrangian, e.g., an arbitrary
function of the square of the time derivative of the field in a homogeneous and isotropic background.
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Early models with acceleration driven by kinetic energy [k-inflation 60, 384, 154] were generalized
to more general Lagrangians [k-essence; e.g., 61, 62, 795]. For UDM, several models have been
investigated, such as the generalized Chaplygin gas [488, 123, 137, 979, 741], although these may
be tightly constrained due to the finite sound speed [e.g. 38, 124, 784, 985]. Vanishing sound
speed models however evade these constraints [e.g., the silent Chaplygin gas of 50]. Other models
consider a single fluid with a two-parameter equation of state [e.g 74]), models with canonical
Lagrangians but a complex scalar field [55], models with a kinetic term in the energy-momentum
tensor [379, 234], models based on a DBI action [236], models which violate the weak equivalence
principle [375] and models with viscosity [321]. Finally, there are some models which try to unify
inflation as well as dark matter and dark energy [206, 688, 572, 575, 430].

A requirement for UDM models to be viable is that they must be able to cluster to allow
structure to form. A generic feature of the UDM models is an effective sound speed, which may
become significantly non-zero during the evolution of the universe, and the resulting Jeans length
may then be large enough to inhibit structure formation. The appearance of this sound speed
leads to observable consequences in the CMB as well, and generally speaking the speed needs to
be small enough to allow structure formation and for agreement with CMB measurements. In the
limit of zero sound speed, the standard cosmological model is recovered in many models. Generally
the models require fine-tuning, although some models have a fast transition between a dark matter
only behavior and ACDM. Such models [729] can have acceptable Jeans lengths even if the sound
speed is not negligible.

2.10.1 Theoretical background
An action which is applicable for most UDM models, with a single scalar field ¢, is

S = /d‘*x\/?g []; + ﬁ((p,X)} , (2.10.1)

where )
X = —§VM<pV”<p (2.10.2)

and V indicates covariant differentiation. This leads to an energy density which is p = 2X 9p/0X —
p, and hence an equation-of-state parameter w = p/p (in units of ¢ = 1) given by

p

[ 2.10.
YT o9X ap/oxX —p (2.10.3)

and p = L. A full description of the models investigated and Lagrangians considered is beyond
the scope of this work; the reader is directed to the review by [128] for more details. Lagrangians
of the form

L(p, X) = f(p)g(X) = V(p), (2.10.4)

where ¢(X) is a Born-Infeld kinetic term, were considered in a Euclid-like context by [201], and
models of this form can avoid a strong ISW effect which is often a problem for UDM models [see
127, and references therein]. This model is parameterized by a late-time sound speed, ¢, and its
influence on the matter power spectrum is illustrated in Figure 44. For zero sound speed ACDM
is recovered.

2.10.2 Euclid observables

Of interest for Euclid are the weak lensing and BAO signatures of these models, although the
supernova Hubble diagram can also be used [885]. The observable effects come from the power
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Figure 44: The z = 0 matter power spectrum arising in UDM models with a Lagrangian given by
Eq. (2.10.4). ACDM is solid, and UDM models with ¢ = 107',1072,107% are shown from bottom to
top. Image reproduced by permission from [201].

spectrum and the evolution of the equation-of-state parameter of the unified fluid, which affects
distance measurements. The observational constraints of the generalized Chaplygin gas have been
investigated [706], with the model already constrained to be close to ACDM with SDSS data and
the CMB. The effect on BAO measurements for Euclid has yet to be calculated, but the weak
lensing effect has been considered for non-canonical UDM models [202]. The change in shape
and oscillatory features introduced in the power spectrum allow the sound speed parameter to be
constrained very well by Euclid, using 3D weak lensing [427, 506] with errors ~ 1075 [see also 198].

2.11 Dark energy and dark matter

In Section 1.4, we have illustrated the possibility that dark energy, seen as a dynamical scalar
field (quintessence), may interact with other components in the universe. When starting from an
action such as Eq. (1.4.20), the species which interact with quintessence are characterized by a
mass function that changes in time [514, 33, 35, 724]. Here, we consider the case in which the
evolution of cold dark matter (CDM) particles depends on the evolution of the dark-energy scalar
field. In this case the general framework seen in Section 1.4 is specified by the choice of the function
me = m(¢). The coupling is not constrained by tests of the equivalence principle and solar system
constraints, and can therefore be stronger than the coupling with baryons. Typical values of
presently allowed by observations (within current CMB data) are within the range 0 < 8 < 0.06
at 95% CL for a constant coupling and an exponential potential, [114, 47, 35, 44], or possibly
more if neutrinos are taken into account or more realistic time-dependent choices of the coupling
are used [539, 531]. As mentioned in Section 1.4.4, this framework is generally referred to as
‘coupled quintessence’ (CQ). Various choices of couplings have been investigated in the literature,
including constant /5 [33, 619, 35, 518, 414, 747, 748, 724] and varying couplings [76], with effects
on Supernovae, CMB and cross-correlation of the CMB and LSS [114, 47, 35, 44, 539, 531, 612].
The presence of a coupling (and therefore, of a fifth force acting among dark matter particles)
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modifies the expansion of the universe, linear perturbations and most relevantly, structure forma-
tion. Coupled quintessence is a concrete model in which a non-negligible amount of dark energy
is present at early times. The presence of such an early dark-energy component is accompanied
specific features, as illustrated in Section 1.4 for a general framework:

1. a fifth force V [®, + B¢] with an effective G, = Gn[1 + 26%(¢)];
2. a velocity-dependent term Hv,=H (1 — ﬂ(qb)%) Vo

3. a time-dependent mass for each particle «, evolving according to Eq. (1.4.25).

All these effects, and in particular the first two, contribute significantly to structure formation.
Note that the second and third terms are not independent of each other as they are a direct
consequence of momentum conservation. Depending on the function m.(¢), and therefore S5(¢),
the first two terms can partially balance: the fifth force increases gravitational attraction whilst the
velocity-dependent term, if the CDM mass decreases with time, tries to dilute the concentration
of the virialized haloes. In particular, a striking difference between constant and variable-coupling
models concerning the interplay of all these three effects has been highlighted in [76]: whilst for
constant couplings only the latter two effects can alter the virial equilibrium of an already-collapsed
object, for the case of a variable coupling the time evolution of the effective gravitational constant
can also modify the virial status of a halo, and can either enhance or counteract the effect of
reducing halo concentrations (for decreasing and increasing couplings, respectively). Nonlinear
evolution within coupled quintessence cosmologies has been addressed using various methods of
investigation, such as spherical collapse [611, 962, 618, 518, 870, 3, 129] and alternative semi-
analytic methods [787, 45]. N-body and hydro-simulations have also been done [604, 79, 76, 77,
80, 565, 562, 75, 980].
We list here briefly the main observable features typical of this class of models:

e enhanced ISW effect [33, 35, 612]; such effects may be partially reduced when taking into
account nonlinearities, as described in [727];

e increase in the number counts of massive clusters at high redshift [77];

e scale-dependent bias between baryons and dark matter, which behave differently if only dark
matter is coupled to dark energy [79, 75];

e less steep inner core halo profiles (depending on the interplay between fifth force and velocity-
dependent terms) [79, 76, 565, 562, 75];

e lower concentration of the halos [79, 76, 562];
e voids are emptier when a coupling is active [80].

As discussed in subsection 1.6.1, when a variable coupling 5(¢) is active the relative balance of
the fifth-force and other dynamical effects depends on the specific time evolution of the coupling
strength. Under such conditions, certain cases may also lead to the opposite effect of larger halo
inner overdensities and higher concentrations, as in the case of a steeply growing coupling function
[see 76]. Alternatively, the coupling can be introduced by choosing directly a covariant stress-
energy tensor, treating dark energy as a fluid in the absence of a starting action [619, 916, 193,
794, 915, 613, 387, 192, 388]. For an illustration of nonlinear effects in the presence of a coupling
see Section 1.6.
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2.12 Ultra-light scalar fields

Ultra-light scalar fields arise generically in high energy physics, most commonly as axions or other
axion-like particles (ALPs). They are the Pseudo-Goldstone bosons (PGBs) of spontaneously
broken symmetries. Their mass remains protected to all loop orders by a shift symmetry, which
is only weakly broken to give the fields a mass and potential, through non perturbative effects.
Commonly these effects are presumed to be caused by instantons, as in the case of the QCD
axion, but the potential can also be generated in other ways that give potentials that are useful,
for example, in the study of quintessence [705]. Here we will be considering a general scenario,
motivated by the suggestions of [63] and [452], where an ultralight scalar field constitutes some
fraction of the dark matter, and we make no detailed assumptions about its origin.

Axions arise generically in string theory [871]. They are similar to the well known QCD axion
[715, 873, 872, 315, 742, 866, 911, 2, 316, 908, 932], and their cosmology has been extensively
studied [see, for example, 84]. String axions are the Kaluza—Klein zero modes of anti-symmetric
tensor fields, the number of which is given by the number of closed cycles in the compact space: for
example a two-form such as Bjysn'® has a number of zero modes coming from the number of closed
two-cycles. In any realistic compactification giving rise to the Standard Model of particle physics
the number of closed cycles will typically be in the region of hundreds. Since such large numbers of
these particles are predicted by String Theory, we are motivated to look for their general properties
and resulting cosmological phenomenology.

The properties of the axion 6 are entirely determined by its potential U, whose specific form
depends on details in string theory that will not concern us, and two parameters in the four-
dimensional Lagrangian

L= %3(89)2 — AU (a), (2.12.1)

where f, is the scale at which the Peccei-Quinn-like symmetry — an additional global U(1) sym-
metry — is broken, also referred to as the axion decay constant, and A is the overall scale of the
potential. In terms of the canonically normalized field ¢ = f,60, we find that the mass is given by

A2
= ﬁ'

The values of these parameters are determined by the action S of the non-perturbative physics
that generates the potential for a given axion, and it was argued in [63] that this scales with the
volume/area of the closed cycle giving rise to that axion, S ~ A. f, and S are related by

m (2.12.2)

My
Fa 751’ _ (2.12.3)
fa is typically of order 10'¢ GeV and can be considered constant for all string axions [871]. However,
the mass of each axion depends exponentially on S from

A = pte™, (2.12.4)

where 1 sets the scale of the non-perturbative physics (essentially, the Planck Scale in the string
case), and so, as S varies from axion to axion depending on the cycle areas in the compact space,
we expect axion masses to evenly distribute on a logarithmic mass scale all the way down to the
Hubble scale today, Ho ~ 10733 eV [63].

There will be a small thermal population of ALPs, but the majority of the cosmological popu-
lation will be cold and non-thermally produced. Production of cosmological ALPs proceeds by the

16 Bysn is the antisymmetric partner of the metric, which in heterotic string theory gives rise to the model-
independent axion. The indices M, N run over the spacetime dimensions, 0,...,D — 1.
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vacuum realignment mechanism. When the Peccei-Quinn-like U(1) symmetry is spontaneously
broken at the scale f, the ALP acquires a vacuum expectation value, the misalignment angle 6,
uncorrelated across different causal horizons. However, provided that inflation occurs after sym-
metry breaking, and with a reheat temperature T' < f,, then the field is homogenized over our
entire causal volume. This is the scenario we will consider. The field 6 is a PGB and evolves
according to the potential U acquired at the scale u. However, a light field will be frozen at 6;
until the much later time when the mass overcomes the Hubble drag and the field begins to roll
towards the minimum of the potential, in exact analogy to the minimum of the instanton potential
restoring CP invariance in the Peccei-Quinn mechanism for the QCD axion. Coherent oscillations
about the minimum of U lead to the production of the weakly coupled ALPs, and it is the value
of the misalignment angle that determines the cosmological density in ALPs [579, 431, 826].

The underlying shift symmetry restricts U to be a periodic function of 8 for true axions, but
since in the expansion all couplings will be suppressed by the high scale f,, and the specific form
of U is model-dependent, we will make the simplification to consider only the quadratic mass term
as relevant in the cosmological setting, though some discussion of the effects of anharmonicites will
be made. In addition, [705] have constructed non-periodic potentials in string theory.

Scalar fields with masses in the range 10733 eV < m < 10722 eV are also well-motivated
dark matter candidates independently of their predicted existence in string theory, and constitute
what Hu has dubbed “fuzzy cold dark matter”, or FCDM [452]. The Compton wavelength of the
particles associated with ultra-light scalar fields, A, = 1/m in natural units, is of the size of galaxies
or clusters of galaxies, and so the uncertainty principle prevents localization of the particles on any
smaller scale. This naturally suppresses formation of structure and serves as a simple solution to
the problem of “cuspy halos” and the large number of dwarf galaxies, which are not observed and
are otherwise expected in the standard picture of CDM. Sikivie has argued [827] that axion dark
matter fits the observed caustics in dark matter profiles of galaxies, which cannot be explained by
ordinary dust CDM.

The large phase space density of ultralight scalar fields causes them to form Bose—Einstein
condensates [see 828, and references therein] and allows them to be treated as classical fields in a
cosmological setting. This could lead to many interesting, and potentially observable phenomena,
such as formation of vortices in the condensate, which may effect halo mass profiles [829, 484], and
black hole super radiance [63, 64, 772], which could provide direct tests of the “string axiverse”
scenario of [63]. In this summary we will be concerned with the large-scale indirect effects of ultra-
light scalar fields on structure formation via the matter power spectrum in a cosmology where a
fraction f = Q,/Q,, of the dark matter is made up of such a field, with the remaining dark matter
a mixture of any other components but for simplicity we will here assume it to be CDM so that
(1= = Q.

If ALPs exist in the high energy completion of the standard model of particle physics, and are
stable on cosmological time scales, then regardless of the specifics of the model [882] have argued
that on general statistical grounds we indeed expect a scenario where they make up an order
one fraction of the CDM, alongside the standard WIMP candidate of the lightest supersymmetric
particle. However, it must be noted that there are objections when we consider a population of
light fields in the context of inflation [605, 606]. The problem with these objections is that they
make some assumptions about what we mean by “fine tuning” of fundamental physical theories,
which is also related to the problem of finding a measure on the landscape of string theory and
inflation models [see, e.g., 583], the so-called “Goldilocks problem.” Addressing these arguments
in any detail is beyond the scope of this summary.

We conclude with a summary of the most important equations and properties of ultra-light
scalar fields.

e In conformal time and in the synchronous gauge with scalar perturbation h as defined in
[599], a scalar field with a quadratic potential evolves according to the following equations
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for the homogeneous, ¢o(7), and first order perturbation, ¢;(, E), components
bo + 2Ho + m2a’po = 0, (2.12.5)
. . 1. .
b1+ 2Hp1 + (m*a® + k)¢ = —§¢0h; (2.12.6)
In cosmology we are interested in the growth of density perturbations in the dark matter,

and how they effect the expansion of the universe and the growth of structure. The energy-
momentum tensor for a scalar field is

T, = ¢tp., — %((ﬂad);a +2V)5" (2.12.7)

which to first order in the perturbations has the form of a perfect fluid and so we find the
density and pressure components in terms of ¢g, ¢1,

-2 2
pu =585 + 5%, (2.128)
§pa :a72¢0¢.)1 + m2¢)0¢1, (2129)
-2 2
p=2 g2 g2 (2.12.10)
2 2
5P, =a"2pop1 — m2podu, (2.12.11)
(p+ P)0y =a2k2dod1; (2.12.12)

The scalar field receives an initial value after symmetry breaking and at early times it remains
frozen at this value by the Hubble drag. A frozen scalar field behaves as a cosmological
constant; once it begins oscillating it will behave as matter. A field begins oscillating when

H(t) < m; (2.12.13)

Do oscillations begin in the radiation or matter dominated era? The scale factor at which
oscillations begin, acsc, is given by

te /6, N\ 1/2
Aosc = <q> () , m 2 1027V,
to mto

L \2/3
Qosc = <) s m < 107276\/';
mto

(2.12.14)

If oscillations begin in the matter-dominated era then the epoch of equality will not be the
same as that inferred from the matter density today. Only CDM will contribute to the matter
density at equality, so that the scale factor of equality is given by
Q. 1
Qog = — —; 2.12.15
=0, T (212:15)
The energy density today in such an ultralight field can be estimated from the time when
oscillations set in and depends on its initial value as

1/1\? )
Q0 = ¢ <t0> bo(t:)?, (2.12.16)

while fields that begin oscillations in the radiation era also have a mass dependence in the
final density as ~ m'/2;
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e In the context of generalized dark matter [447] we can see the effect of the Compton scale of
these fields through the fluid dynamics of the classical field. The sound speed of a field with
momentum k and mass m at a time when the scale factor of the FLRW metric is a is given
by

k‘2
= 4m2a?’
=1, k> 2ma.

[

k < 2ma,

®

w N

(2.12.17)

On large scales the pressure becomes negligible, the sound speed goes to zero and the field
behaves as ordinary dust CDM and will collapse under gravity to form structure. However
on small scales, set by A, the sound speed becomes relativistic, suppressing the formation of
structure;

e This scale-dependent sound speed will affect the growth of overdensities, so we ask: are the
perturbations on a given scale at a given time relativistic? The scale

kr = ma(t) (2.12.18)

separates the two regimes. On small scales: k > kg the sound speed is relativistic. Structure
formation is suppressed in modes that entered the horizon whilst relativistic.

e Time dependence of the scale kg and the finite size of the horizon mean that suppression of
structure formation will accumulate on scales larger than kr. For the example of ultralight
fields that began oscillations in the matter-dominated regime, we calculate that suppression
of structure begins at a scale

m 1/3 (100 km s~ 1
ko ~ (10_33 eV) ( ; ) h Mpc™, (2.12.19)

which is altered to k,, ~ m!'/? for heavier fields that begin oscillations in the radiation era
[37];

e The suppression leads to steps in the matter power spectrum, the size of which depends on
f. The amount of suppression can be estimated, following [37], as

S(a) = (@

)2(171/4(—1+\/W))
. .

(2.12.20)

As one would expect, a larger f gives rise to greater suppression of structure, as do lighter
fields that free-stream on larger scales.

Numerical solutions to the perturbation equations indeed show that the effect of ultralight fields
on the growth of structure is approximately as expected, with steps in the matter power spectrum
appearing. However, the fits become less reliable in some of the most interesting regimes where
the field begins oscillations around the epoch of equality, and suppression of structure occurs near
the turnover of the power spectrum, and also for the lightest fields that are still undergoing the
transition from cosmological constant to matter-like behavior today [632]. These uncertainties are
caused by the uncertainty in the background expansion during such an epoch. In both cases a
change in the expansion rate away from the expectation of the simplest ACDM model is expected.
During matter and radiation eras the scale factor grows as a ~ 7P and p can be altered away
from the ACDM expectation by O(10)% by oscillations caused during the scalar field transition,
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which can last over an order of magnitude in scale factor growth, before returning to the expected
behavior when the scalar field is oscillating sufficiently rapidly and behaves as CDM.

The combined CMB-large scale structure likelihood analysis of [37] has shown that ultralight
fields with mass around 1073~ 10724 eV might account for up to 10% of the dark matter abun-
dance.

2.12.1 Requirements

Ultralight fields are similar in many ways to massive neutrinos [37], the major difference being
that their non-thermal production breaks the link between the scale of suppression, k., and the
fraction of dark matter, f,., through the dependence of f,, on the initial field value ¢;. Therefore
an accurate measurement of the matter power spectrum in the low-k region where massive neutrinos
corresponding to the WMARP limits on 2, are expected to suppress structure will determine whether
the expected relationship between €2, and k,,, holds. These measurements will limit the abundance
of ultralight fields that begin oscillations in the matter-dominated era.

Another powerful test of the possible abundance of ultralight fields beginning oscillations in
the matter era will be an accurate measure of the position of the turn over in the matter power
spectrum, since this gives a handle on the species present at equality. Ultralight fields with masses
in the regime such that they begin oscillations in the radiation-dominated era may suppress struc-
ture at scales where the BAO are relevant, and thus distort them. An accurate measurement of
the BAO that fits the profile in P(k) expected from standard ACDM would place severe limits on
ultralight fields in this mass regime.

Recently, [633] showed that with current and next generation galaxy surveys alone it should
be possible to unambiguously detect a fraction of dark matter in axions of the order of 1% of
the total. Furthermore, they demonstrated that the tightest constraints on the axion fraction f,,
come from weak lensing; when combined with a galaxy redshift survey, constraining f,, to 0.1%
should be possible, see Figure 45. The strength of the weak lensing constraint depends on the
photometric redshift measurement, i.e., on tomography. Therefore, lensing tomography will allow
Euclid — through the measurement of the growth rate — to resolve the redshift evolution of the
axion suppression of small scale convergence power. Further details can be found in [633].

Finally, the expected suppression of structure caused by ultralight fields should be properly
taken into account in N-body simulations. The nonlinear regime of P(k) needs to be explored
further both analytically and numerically for cosmologies containing exotic components such as
ultralight fields, especially to constrain those fields which are heavy enough such that k., occurs
around the scale where nonlinearities become significant, i.e., those that begin oscillation deep
inside the radiation-dominated regime. For lighter fields the effects in the nonlinear regime should
be well-modelled by using the linear P(k) for N-body input, and shifting the other variables such
as 2. accordingly.

2.13 Dark-matter surrogates in theories of modified gravity

2.13.1 Extra fields in modified gravity

The idea that the dark universe may be a signal of modified gravity has led to the development of
a plethora of theories. From polynomials in curvature invariants, preferred reference frames, UV
and IR modifications and extra dimensions, all lead to significant modifications to the gravitational
sector. A universal feature that seems to emerge in such theories is the existence of fields that may
serve as a proxy to dark matter. This should not be unexpected. On a case by case basis, one can
see that modifications to gravity generically lead to extra degrees of freedom.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2013-6


http://www.livingreviews.org/lrr-2013-6

Cosmology and Fundamental Physics with the Euclid Satellite 159

104 CMB
—4&— GRS
- A -WL

——— Total

[Percent]
S

ax

~

E= 2| L . R ]

> 10 A

=]

g

Y

(5]

=

S 10'F ]
0 1 1 1 1
10 107 107" 107 107

Fiducial Axion Mass [eV]

Figure 45: Marginalized uncertainty in f.» for CMB (green), a galaxy redshift survey (red), weak
lensing (blue) and the total (black) evaluated for four different fiducial axion masses, for the cosmology
ACDM+ foz+v. Image reproduced by permission from [633], copyright by APS.

For example, polynomials in curvature invariants lead to higher-derivative theories which in-
evitably imply extra (often unstable) solutions that can play the role of dark matter. This can
be made patently obvious when mapping such theories onto the Einstein frame with an addition
scalar field (Scalar-Tensor theories). Einstein-Aether theories [989] explicitly introduce an extra
time-like vector field. The time-like constraint locks the background, leading to modifications to
the background expansion; perturbations in the vector field can, under certain conditions, lead
to growth of structure, mimicking the effect of pressureless dark matter. The vector field plays
the same role in TeVeS [117], where two extra fields are introduced to modify the gravitational
dynamics. And the same effects come into play in bigravity models [83] where two metrics are
explicitly introduced — the scalar modes of the second metric can play the role of dark matter.

In what follows we briefly focus on three of the above cases where extra gravitational degrees of
freedom play the role of dark matter: Einstein-Aether models, TeVeS models and bigravity models.
We will look at the Einstein-Aether model more carefully and then briefly discuss the other two
cases.

2.13.2 Vector dark matter in Einstein-Aether models

As we have seen in a previous section, Einstein-Aether models introduce a time-like vector field
A® into gravitational dynamics. The four vector A% can be expanded as A" = (1 + €X,ed’Z) =
(1+€X, 50;7) [989]. In Fourier space we have A* = (1 — e¥,i<k;V), where, for computational
convenience, we have defined V' = Z/a and have used the fact that the constraint fixes X = —W.

The evolution equation for the perturbation in the vector field becomes (where primes denote
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derivatives with respect to conformal time)

0=c [V + K2V + 2HV' + 2H?V + ¥ + & + 2H V]

"
+ o K2V + 6H2V — 3%&/ + 30 + 31V

a/

!
+ c3[k2V + 212V — —V+ '+ HY]

F /
+ %[—Keo/ﬂ — K% (=1 (V' + ) + 3o HV + csHV)]. (2.13.1)
K
The perturbation in the vector field is sourced by the two gravitational potentials ¢ and ¥ and

will in turn source them through Einstein’s equations. The Poisson equation takes the form

1
k2P — _§FK01k2 V! + W + (34 2¢3)HV]

Ya

) (2.13.2)

— 47Ga? Z(paaa +3(pa + P.)H
a

To understand why the vector field can play the role of dark matter it is instructive to study
the effect of the vector field during matter domination. It should give us a sense of how in the
generalized Einstein-Aether case, the growth of structure is affected. Let us consider the simplest
case in which the the dominant remaining contribution to the energy density is baryonic, treated
as a pressureless perfect fluid with energy-momentum tensor T and let us introduce the variable
V' = E. For ease of illustration we will initially consider only the case where V is described by a

growing monomial, i.e. V' = V;(n/no)P. During the matter era we have

a?0TC ~ —1p&(k)k*n>TP—on (2.13.3)
(0 — ®) ~ —1g&(k)k*n°tP—on (2.13.4)
with Ip = —(c1(2 4+ p)n + 2a(1 — 2n)n), ls = —(c1 + ¢3)n(6n — p — 10), and
2\
E(K) ~ AVo(k)g PR ™ | 30 (MO) 1 , (2.13.5)

where knyb = 1/Mioday. Hence, the vector field affects our evolution equations for the matter and
metric perturbations only through its contribution to the energy density and its anisotropic stress.
On large scales, kn < 1, and assuming adiabatic initial conditions for the fields §, ® and 6, this
leads to L€ (k)
. S 54+p—6n

0=C1(k) + (10+p—6n)n , (2.13.6)
where C is a constant of integration and we have omitted the decaying mode. Therefore, even
before horizon crossing, the anisotropic stress term due to the vector field can influence the time
evolution of the baryon density contrast.

On small scales (kn > 1), we find

(3lg +1s)
(5+p—6n)(10+p—6n)

where C3(k) is a constant of integration. Hence, for sub-horizon modes, the influence of the vector
field on the evolution of ¢ is a combination of the effect of the energy density and anisotropic stress
contributions though both, in this limit, result in the same contributions to the scale dependence
and time evolution of the density contrast. The net effect is that, for particular choices of param-
eters in the action, the perturbations in the vector field can enhance the growth of the baryon
density contrast, very much along the lines of dark matter in the dark matter dominated scenario.

§(k,n) = Co(k)n* + &(k) (kn)?n> =0, (2.13.7)
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2.13.3 Scalar and tensors in TeVeS

We have already come across the effect of the extra fields of TeVeS. Recall that, in TeVeS, as well
as a metric (tensor) field, there is a time-like vector field and a scalar field both of which map the
two frames on to each other. While at the background level the extra fields contribute to modifying
the overall dynamics, they do not contribute significantly to the overall energy density. This is
not so at the perturbative level. The field equations for the scalar modes of all three fields can be
found in the conformal Newtonian gauge in [841]. While the perturbations in the scalar field will
have a negligible effect, the space-like perturbation in the vector field has an intriguing property:
it leads to growth. [318] have shown that the growing vector field feeds into the Einstein equations
and gives rise to a growing mode in the gravitational potentials and in the baryon density. Thus,
baryons will be aided by the vector field leading to an effect akin to that of pressureless dark
matter. The effect is very much akin to that of the vector field in Einstein-Aether models — in fact
it is possible to map TeVeS models onto a specific subclass of Einstein-Aether models. Hence the
discussion above for Einstein-Aether scenarios can be used in the case of TeVeS.

2.13.4 Tensor dark matter in models of bigravity

In bigravity theories [83], one considers two metrics: a dynamical metric g,, and a background
metric, jog. As in TeVeS, the dynamical metric is used to construct the energy-momentum tensor
of the non-gravitational fields and is what is used to define the geodesic equations of test particles.
The equations that define its evolution are usually not the Einstein field equations but may be
defined in terms of the background metric.

Often one has that g.g is dynamical, with a corresponding term in the gravitational action.
It then becomes necessary to link gns to g, with the background metric determining the field
equations of the dynamical metric through a set of interlinked field equations. In bigravity models
both metrics are used to build the Einstein—Hilbert action even though only one of them couples
to the matter content. A complete action is of the form

! /d4x {F R—2A) ++/—G(R—2A) — \/Tg%(gfl)aﬁga,g , (2.13.8)

~ 167G

where A and A are two cosmological constant terms and ¢2 defines the strength of the linking term
between the two actions. The cosmological evolution of perturbations in these theories has been
worked out in some detail. It turns out that perturbations in the auxiliary field can be rewritten
in the form of a generalized dark matter fluid [453] with fluid density, momentum, pressure and
shear that obey evolution equations which are tied to the background evolution. As a result, it is
possible to work out cosmological observables such as perturbations in the CMB and large scale
structure. If we restrict ourselves to a regime in which p simply behaves as dark matter, then the
best-fit bimetric model will be entirely indistinguishable from the standard CDM scenario.

2.14 Outlook

Dark matter dominates the matter content of the universe, and only through astrophysical and cos-
mological observations can the nature of dark matter on large scales be determined. In this review,
we have discussed a number of observational techniques available to Euclid: dark matter mapping,
complementarity with other astronomical observations (e.g., X-ray and CMB experiments); cluster
and galaxy scale dark matter halo mapping; and power spectrum analyses. The techniques de-
scribed will allow Euclid to constrain a variety of dark matter candidates and their microphysical
properties. We have discussed Warm Dark Matter scenarios, axion-like dark matter, scalar field
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dark matter models (as well as the possible interactions between dark energy and scattering with
ordinary matter) and massive neutrinos (the only known component of dark matter).
Here, we briefly list the main dark matter constraints so far forecasted for Euclid:

The weak lensing power spectrum from Euclid will be able to constrain warm dark matter
particle mass to about mwpm > 2 keV [630];

The galaxy power spectrum, with priors from Planck (primary CMB only), will yield an error
on the sum of neutrino masses X of 0.04 eV (see Table 18; [211]);

Euclid’s weak lensing should also yield an error on ¥ of 0.05 eV [507];

[480] have shown that weak gravitational lensing from Euclid data will be able to determine
neutrino hierarchy (if ¥ < 0.13);

The forecasted errors on the effective number of neutrino species N, ¢ for Euclid (with a
Planck prior) are £0.1 [for weak lensing 507] and £0.086 [for galaxy clustering 211];

The sound speed of unified dark energy-dark matter can be constrained with errors ~ 107
by using 3D weak lensing [202];

Recently, [633] showed that with current and next generation galaxy surveys alone it should
be possible to unambiguously detect a fraction of dark matter in axions of the order of 1%
of the total;

We envisage a number of future scenarios, all of which give Euclid an imperative to confirm
or identify the nature of dark matter. In the event that a dark matter candidate is discovered
in direct detection experiments or an accelerator (e.g. LHC) a primary goal for Euclid will be to
confirm, or refute, the existence of this particle on large scales. In the event that no discovery is
made directly, then astronomical observations will remain our only way to determine the nature
of dark matter.
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Part 3: Initial Conditions

3.1 Introduction

The exact origin of the primordial perturbations that seeded the formation of the large-scale
structure in the universe is still unknown. Our current understanding of the initial conditions
is based on inflation, a phase of accelerated expansion preceding the standard evolution of the
universe [416, 861, 863, 791]. In particular, inflation explains why the universe is so precisely
flat, homogeneous and isotropic. During this phase, scales much smaller than the Hubble radius
are inflated to super-horizon sizes, so that regions appearing today as causally disconnected were
in fact very close in the past. This mechanism is also at the origin of the cosmic large-scale
structure. Vacuum quantum fluctuations of any light field present during inflation are amplified
by the accelerated expansion and freeze-out on super-Hubble scales acquiring a quasi-scale invariant
spectrum [675, 425, 863, 417, 86].

From the early development of inflation, the simplest proposal based on a weakly-coupled single
field rolling along its potential [576, 20] has gained strength and many models have been built based
on this picture (see for instance [581] for a review). Although some inflationary potentials are now
excluded by current data (see for instance [525]), this scenario has been extremely successful in
passing many observational tests: it predicts perfectly adiabatic and almost Gaussian fluctuations
with a quasi scale-invariant spectrum and a small amount of gravitational waves.

While current data have ruled out some classes of inflationary models, the next qualitative step
forward is investigating the physics responsible for inflation: we still lack a complete understanding
of the high energy physics describing it. In fact, most likely the physics of inflation is far out of
reach of terrestrial experiments, many orders of magnitude larger than the center-of-mass energy at
the Large Hadron Collider (LHC). Thus, cosmological tests of inflation offer a unique opportunity
to learn about ultra-high energy physics. We can do this by targeting observations which directly
probe the dynamics of inflation. One route is to accurately measure the shape of the primordial
power spectrum of scalar perturbations produced during the phase of accelerated expansion, which
is directly related to the shape of the inflaton potential, and to constrain the amplitude of the
corresponding stochastic gravitational-wave background, which is related instead to the energy-
scale of inflation.

A complementary approach is offered by constraining — or exploring — how much the distri-
bution of primordial density perturbations departs from Gaussian statistics and purely adiabatic
fluctuations. Indeed, future large-scale structure surveys like Euclid can probe these features with
an unprecedented accuracy, thus providing a way to test aspects of inflationary physics that are
not easily accessible otherwise. Non-Gaussianity is a very sensitive probe of self-couplings and
interactions between the fields generating the primordial perturbations, whereas the presence of
isocurvature modes can teach us about the number of fields present during inflation and their role
in reheating and generating the matter in the universe.

Furthermore, non-minimal scenarios or proposals even radically different from single-field in-
flation are still compatible with the data. In order to learn something about the physics of the
early universe we need to rule out or confirm the conventional slow-roll scenario and possibly
discriminate between non-conventional models. Non-Gaussianities and isocurvature perturbations
currently represent the best tools that we have to accomplish this task. Any deviation from the con-
ventional Gaussian and adiabatic initial perturbations would represent important breakthroughs
in our understanding of the early universe. In this section we are going to review what we can
learn by constraining the initial conditions with a large-scale structure survey like Euclid.
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3.2 Constraining inflation

The spectrum of cosmological perturbations represents an important source of information on the
early universe. During inflation scalar (compressional) and tensor (purely gravitational) fluctua-
tions are produced. The shape and the amplitude of the power spectrum of scalar fluctuations can
be related to the dynamics of the inflationary phase, providing a window on the inflaton potential.
Inflation generically predicts a deviation from a purely scale-invariant spectrum. Together with
future CMB experiments such as Planck, Euclid will improve our constraints on the scalar spectral
index and its running, helping to pin down the model of inflation.

3.2.1 Primordial perturbations from inflation

It is convenient to describe primordial perturbations using the curvature perturbation on uniform
density hypersurfaces ¢ introduced in [86]. An important property of this quantity is that for
adiabatic perturbations — i.e., in absence of isocurvature perturbations, discussed in Section 3.5
— it remains constant on super-Hubble scales, allowing us to connect the early inflationary phase
to the late-time universe observations, regardless of the details of reheating. In a gauge where
the energy density of the inflaton vanishes, we can define ( from the spatial part of the metric
(assuming a flat FRW universe), as [781, 616]

9ij = a*(t) exp (2€) b - (3.2.1)

This definition, where ¢ enters the metric in the exponential form, has the advantage that it is valid
also beyond linear order and can be consistently used when discussing non-Gaussian fluctuations,
such as in Section 3.3.

The power spectrum of primordial perturbations is given by

(i) = (2m)°0(k + k') P (k) (3.2.2)

where (...) denotes the average over an ensemble of realizations. It is useful to define a dimension-
less spectrum as P, (k) = %Pc(k) , where the index s stands for scalar, to distinguish it from the
spectrum of tensor perturbations, defined below. The deviation from scale-invariance of the scalar

spectrum is characterized by the spectral index n, defined by (see, for instance, [570])

dInP,
ng=14+

=14 (3.2.3)

where ng = 1 denotes a purely scale-invariant spectrum. We also define the running of the spectral

index o as
dng

as = .
* T dlnk
These quantities are taken at a particular pivot scale. For our analysis we chose it to be k, =
0.05 Mpc™!. Thus, with these definitions the power spectrum can be written as

(3.2.4)

27T2 n —1+ia n
Pe(k) = FAs(k*)(k/k*) a(ka) =1t gas (k) In(k/k) (3.2.5)

where Ay is the normalization parameterising the amplitude of the fluctuations.
During inflation tensor modes are also generated. They are described by the gauge invariant
metric perturbation h;;, defined from the spatial part of the metric as

gij = a>(t) (8ij + his) . hl; =0=h. (3.2.6)
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Each mode has 2 polarizations, hy and hy, each with power spectrum given by

(hichyr) = (27)%8(k + k') Py (k) . (3.2.7)
Defining the dimensionless power spectrum of tensor fluctuations as P(k) = 22’;—32Ph(k) , where
the factor of 2 comes from the two polarizations, it is convenient to define the ratio of tensor to
scalar fluctuations as

7 = Pi(ki)/Ps (k) - (3.2.8)

The form of the power spectrum given in Eq. (3.2.5) approximates very well power spectra of
perturbations generated by slow-roll models. In particular, the spectrum of scalar fluctuations is
given in terms of the Hubble rate H and the first slow-roll parameter ¢ = -H /H?, both evaluated
at the time when the comoving scale k crosses the Hubble radius during inflation,

1 H?

Polk) = gezeaiz,

. (3.2.9)
k=aH

2 N 2
During slow-roll, € is related to the first derivative of the inflaton potential V' (¢), € & @ (V7> ,

where the prime denotes differentiation with respect to ¢. As H and e vary slowly during inflation,
this spectrum is almost scale-invariant. Indeed, the scalar spectral index ns in Eq. (3.2.3) reads

ng =1—6¢+ 2ny, (3.2.10)

where the second slow-roll parameter ny = M1§1V7" must be small for inflation to yield a sufficient
number of e-foldings. The running of the spectral index defined in Eq. (3.2.4) is even smaller,
being second-order in the slow-roll parameters. It is given by a, = 16eny — 24¢% — 2£y where we
have introduced