534 research outputs found

    Biobank: Who'd bank on it?

    Get PDF
    The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included

    A self-contained wind speed, direction and location system for buoys and ships in the World Ocean Circulation Experiment

    Get PDF
    Knowledge of the absolute wind velocity near the surface of the ocean is a requirement of the World Ocean Circulation Experiment (WOCE) and other large programs directed towards understanding air-sea interactions and how ocean circulation and climate are interrelated. The measurement is made possible using IMET (Improved METeorology) modules, a next generation meteorological data acquisition system developed as part of the WOCE program. An IMET system consists of a set of intelligent modules for each measurement variable, with data being recorded on a computer, typically PC-based. The IMET wind module includes a propeller for wind speed, a vane and optical encoder for wind direction, a flux gate compass for the north reference, and microprocessor-based electronics for control and data formatting. The IMET Global Positioning System (GPS) module includes a five chanel GPS receiver and microprocessor based electronics for control and data formatting. These modules, as part of the complete measurement suite, result in a self-contained system that can make accurate measurements from research ships, drifting and moored buoys, and volunteer observing ships (VOS).Funding was provided by Grant No. OCE-8709614 from the National Science Foundation

    Land Use and Salinity Drive Changes in SAV Abundance and Community Composition

    Get PDF
    Conserving and restoring submerged aquatic vegetation (SAV) are key management goals for estuaries worldwide because SAV integrates many aspects of water quality and provides a wide range of ecosystem services. Management strategies are typically focused on aggregated abundance of several SAV species, because species cannot be easily distinguished in remotely sensed data. Human land use and shoreline alteration have been shown to negatively impact SAV abundance, but the effects have varied with study, spatial scale, and location. The differences in reported effects may be partly due to the focus on abundance, which overlooks within-community and among-community dynamics that generate total SAV abundance. We analyzed long-term SAV aerial survey data (1984-2009) and ground observations of community composition (1984-2012) in subestuaries of Chesapeake Bay to integrate variations in abundance with differences in community composition. We identified five communities (mixed freshwater, milfoil-Zannichellia, mixed mesohaline, Zannichellia, and Ruppia-Zostera). Temporal variations in SAV abundance were more strongly related to community identity than to terrestrial stressors, and responses to stressors differed among communities and among species. In one fifth of the subestuaries, the community identity changed during the study, and the probability of such a change was positively related to the prevalence of riprapped shoreline in the subestuary. Mixed freshwater communities had the highest rates of recovery, and this may have been driven by Hydrilla verticillata, which was the single best predictor of SAV recovery rate. Additional species-specific and community-specific research will likely yield better understanding of the factors affecting community identity and SAV abundance, more accurate predictive models, and more effective management strategies

    Crowdsourcing Cybersecurity: Cyber Attack Detection using Social Media

    Full text link
    Social media is often viewed as a sensor into various societal events such as disease outbreaks, protests, and elections. We describe the use of social media as a crowdsourced sensor to gain insight into ongoing cyber-attacks. Our approach detects a broad range of cyber-attacks (e.g., distributed denial of service (DDOS) attacks, data breaches, and account hijacking) in an unsupervised manner using just a limited fixed set of seed event triggers. A new query expansion strategy based on convolutional kernels and dependency parses helps model reporting structure and aids in identifying key event characteristics. Through a large-scale analysis over Twitter, we demonstrate that our approach consistently identifies and encodes events, outperforming existing methods.Comment: 13 single column pages, 5 figures, submitted to KDD 201

    Quality, morale and the new contract with GPs

    Get PDF
    In UK general practice the goodwill that has sustained the GP workforce is waning

    Perceived colorectal cancer candidacy and the role of candidacy in colorectal cancer screening

    Get PDF
    Screening is a well-established tool to advance earlier cancer diagnosis. We used Davison’s concept of ‘candidacy’ to explore how individuals draw on collectively constructed images of ‘typical’ colorectal cancer (CRC) sufferers, or ‘candidates’, in order to evaluate their own risk and to ascertain the impact of candidacy on screening participation in CRC. We interviewed 61 individuals who were invited to participate in the Scottish Bowel Screening Programme. Of these, 37 were screeners (17 men and 20 women) and 24 non-screeners (13 men and 11 women). To analyse these data we used a coding frame that drew on: symptoms, risk factors, and retrospective and prospective candidacy. Few participants could identify a definite bowel cancer candidate and notions of candidacy were largely predicated on luck in the sense that anyone could be a candidate for CRC and there was little evidence to support a linear relationship between feelings of risk and screening decisions. Often participants described screening as part of a wider portfolio of being healthy and referred to feeling obliged to look after themselves. Our study suggests that rather than candidates for bowel cancer, screeners viewed themselves as candidates for screening by which screening decisions pointed towards the acceptance and normalisation of the rhetoric of personal responsibility for health. These findings have related theoretical and practical implications; the moral structure that underpins the new public health can be witnessed practically in the narratives by which those who see themselves as candidates for screening embrace wider positive health practices.</p

    CLIVAR Mode Water Dynamics Experiment (CLIMODE) fall 2005, R/V Oceanus voyage 419, November 9, 2005–November 27, 2005

    Get PDF
    CLIMODE (CLIVAR Mode Water Dynamic Experiment) is a program designed to understand and quantify the processes responsible for the formation and dissipation of North Atlantic subtropical mode water, also called Eighteen Degree Water (EDW). Among these processes, the amount of buoyancy loss at the ocean-atmosphere interface is still uncertain and needs to be accurately quantified. In November 2005, a cruise was made aboard R/V Oceanus in the region of the separated Gulf Stream, where intense oceanic heat loss to the atmosphere is believed to trigger the formation of EDW. During that cruise, one surface mooring with IMET meteorological instruments was anchored in the core of the Gulf Stream as well as two moored profilers on its southeastern edge. Surface drifters, APEX floats and bobby RAFOS floats were also deployed along with two other moorings with sound sources. CTD profiles and water samples were also carried out. This array of instruments will permit a characterization of EDW with high spatial and temporal resolutions, and accurate in-situ measurements of air-sea fluxes in the formation region. The present report documents this cruise, the instruments that were deployed and the array of measurements that was set in place.Funding was provided by the National Science Foundation under Grant No. OCE 04-24536

    The Fermi GBM Gamma-Ray Burst Spectral Catalog: Four Years Of Data

    Full text link
    In this catalog we present the updated set of spectral analyses of GRBs detected by the Fermi Gamma-Ray Burst Monitor (GBM) during its first four years of operation. It contains two types of spectra, time-integrated spectral fits and spectral fits at the brightest time bin, from 943 triggered GRBs. Four different spectral models were fitted to the data, resulting in a compendium of more than 7500 spectra. The analysis was performed similarly, but not identically to Goldstein et al. 2012. All 487 GRBs from the first two years have been re-fitted using the same methodology as that of the 456 GRBs in years three and four. We describe, in detail, our procedure and criteria for the analysis, and present the results in the form of parameter distributions both for the observer-frame and rest-frame quantities. The data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center (HEASARC).Comment: Accepted for publication in ApJ

    Stratus 9/VOCALS ninth setting of the Stratus Ocean Reference Station & VOCALS Regional Experiment

    Get PDF
    The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology; air-sea fluxes of heat, freshwater, and momentum; and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with cruises that have come between October and December. During the 2008 cruise on the NOAA ship Ronald H. Brown to the ORS Stratus site, the primary activities were recovery of the Stratus 8 WHOI surface mooring that had been deployed in October 2007, deployment of a new (Stratus 9) WHOI surface mooring at that site; in-situ calibration of the buoy meteorological sensors by comparison with instrumentation put on board by staff of the NOAA Earth System Research Laboratory (ESRL); and observations of the stratus clouds and lower atmosphere by NOAA ESRL. A buoy for the Pacific tsunami warning system was also serviced in collaboration with the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA). The DART (Deep-Ocean Assessment and Reporting of Tsunami) carries IMET sensors and subsurface oceanographic instruments. A DART II buoy was deployed north of the STRATUS buoy, by personnel from the National Data Buoy Center (NDBC) Argo floats and drifters were launched, and CTD casts carried out during the cruise. The ORS Stratus buoys are equipped with two Improved Meteorological (IMET) systems, which provide surface wind speed and direction, air temperature, relative humidity, barometric pressure, incoming shortwave radiation, incoming longwave radiation, precipitation rate, and sea surface temperature. Additionally, the Stratus 8 buoy received a partial CO2 detector from the Pacific Marine Environmental Laboratory (PMEL). IMET data are made available in near real time using satellite telemetry. The mooring line carries instruments to measure ocean salinity, temperature, and currents. The ESRL instrumentation used during the 2008 cruise included cloud radar, radiosonde balloons, and sensors for mean and turbulent surface meteorology. Finally, the cruise hosted a teacher participating in NOAA’s Teacher at Sea Program.Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 for the Cooperative Institute for Climate and Ocean Research (CICOR)
    • …
    corecore