15 research outputs found
BRDFs acquired by directional radiative measurements during EAGLE and AGRISAR
Radiation is the driving force for all processes and interactions between earth surface and atmosphere. The amount of
measured radiation reflected by vegetation depends on its structure, the viewing angle and the solar angle. This angular
dependence is usually expressed in the Bi-directional Reflectance Distribution Function (BRDF). This BRDF is not
only different for different types of vegetation, but also different for different stages of the growth. The BRDF therefore
has to be measured at ground level before any satellite imagery can be used the calculate surface-atmosphere
interaction. The objective of this research is to acquire the BRDFs for agricultural crop types.
A goniometric system is used to acquire the BRDFs. This is a mechanical device capable of a complete hemispherical
rotation. The radiative directional measurements are performed with different sensors that can be attached to this
system. The BRDFs are calculated from the measured radiation.
In the periods 10 June - 18 June 2006 and 2 July - 10 July 2006 directional radiative measurements were performed at
three sites: Speulderbos site, in the Netherlands, the Cabauw site, in the Netherlands, and an agricultural test site in
Goermin, Germany. The measurements were performed over eight different crops: forest, grass, pine tree, corn, wheat,
sugar beat and barley. The sensors covered the spectrum from the optical to the thermal domain. The measured radiance
is used to calculate the BRDFs or directional thermal signature.
This contribution describes the measurements and calculation of the BRDFs of forest, grassland, young corn, mature
corn, wheat, sugar beat and barley during the EAGLE2006 and AGRISAR 2006 fieldcampaigns. Optical BRDF have
been acquired for all crops except barley. Thermal angular signatures are acquired for all the crop