499 research outputs found
Development of ‘RL Plus’: winter wheat variety performance in relation to site characteristics (HGCA Project Report No. 365)
This project developed RL Plus, an augmented version of the Recommended Lists for Cereals and Oilseeds, published by the HGCA on CD and the internet (http://www.hgca.com) to provide the cereals and oilseeds industry with means of interrogating and analysing data from HGCA-funded variety trials. Given that RL Plus is fully documented and published in electronic form, it is not described further here. This report is confined to additional research analysing relative variety performance of winter wheat in terms of site
characteristics.
A spreadsheet was constructed of treated yields of winter wheat from 43 varieties across 506 trials (Recommended List, National List or BSPB trials) in the UK from harvests during 1992-2002. This included site information collected from the trials, and supplemented with the site location (OS coordinates), soil types, meteorological data and drought index derived during the project. Complete, or nearcomplete, data existed for 249 trials from harvests during 1993-2003. These data were used to investigate
factors associated with site variation in variety yields.
Data-mining techniques were used to identify site variables that explained variation in variety yields between sites. This information was used to build models to describe and predict patterns of variety variability due to site differences. Variation in variety yields could be modelled in terms of overall variety differences (43% variety variation accounted for), and variety interactions with large-scale trend due to geographic location (general climate, 16%), small-scale location trend specific to years (micro-climates, 14%), expected site yield (2%), late sown crops (crops sown on/after 30 October, 0.4%), sites with sandy or shallow soil (0.5%), sites with low soil K index (0.4%), differences between years (4.5%), differences between sites (unexplained by site variables, 2%), and other unexplained variation (18%). Further investigation suggested that other site variables, such as previous cropping, might also influence variety variability but that the relationship was local (differed between regions).
The results of the statistical analysis can be used to optimise use of the ‘Varieties on your Farm’ module of RL Plus. In general, geographic location appears to be the most important site variable influencing variation in variety yields across the UK. However, for particular varieties, the expected site yield, soil type or soil K index may be equally important
Tolerance of septoria leaf blotch in winter wheat
For individual varieties, tolerance of septoria leaf blotch was quantified by the slope of the relationship between disease and yield. Variation in disease severity and the associated yield responses were provided across two sites and three seasons of field experiments. Slopes were fitted by residual maximum likelihood for two contrasting models: (i) a fixed-effects model, where no prior assumptions were made about the form of the variety slopes; and (ii) a random-effects model, where deviations in individual variety slopes away from the mean variety slope formed a normal random population with unknown variance. The analyses gave broadly similar results, but with some significant differences. The random model was considered more reliable for predicting variety performance. The effects of disease were quantified as symptom area and green canopy duration. Models of the relationship between symptom area and yield were site-specific. When site effects were not taken into account, these models had poor predictive precision. Models based on the canopy green area gave robust predictions of yield and were not site-specific. Differences in disease tolerance were detected in a comparison of 25 commercial winter wheat varieties. Tolerance was not detected directly through symptom measurements, but instead through measurements of canopy green area, which provides a measurement of the effects of disease that accounts for differences in canopy size across sites and seasons. The varieties showing greatest tolerance tended to have lower attainable yield than the intolerant varieties. Presence of the 1BL/1RS chromosome translocation, which has been reported to increase radiation use efficiency, appeared to be associated with intolerance
Acetylsalicylic acid interferes with embryonic kidney growth and development by a prostaglandin-independent mechanism
AIM: To evaluate the effects of the non-selective, non-steroidal anti-inflammatory drug (NSAID) acetylsalicylic acid (ASA), on ex vivo embryonic kidney growth and development.
METHODS: Pairs of fetal mouse kidneys at embryonic day 12.5 were cultured ex vivo in increasing concentrations of ASA (0.04-0.4 mg/mL) for up to 7 d. One organ from each pair was grown in control media and was used as the internal control for the experimental contralateral organ. In some experiments, organs were treated with ASA for 48 h and then transferred either to control media alone or control media containing 10 μmol/L prostaglandin E2 (PGE2) for a further 5 d. Fetal kidneys were additionally obtained from prostaglandin synthase 2 homozygous null or heterozygous (PTGS2-/- and PTGS2-/+) embryos and grown in culture. Kidney cross-sectional area was used to determine treatment effects on kidney growth. Whole-mount labelling to fluorescently detect laminin enabled crude determination of epithelial branching using confocal microscopy.
RESULTS: Increasing ASA concentration (0.1, 0.2 and 0.4 mg/mL) significantly inhibited metanephric growth (P < 0.05). After 7 d of culture, exposure to 0.2 mg/mL and 0.4 mg/mL reduced organ size to 53% and 23% of control organ size respectively (P < 0.01). Addition of 10 μmol/L PGE2 to culture media after exposure to 0.2 mg/mL ASA for 48 h resulted in a return of growth area to control levels. Application of control media alone after cessation of ASA exposure showed no benefit on kidney growth. Despite the apparent recovery of growth area with 10 μmol/L PGE2, no obvious renal tubular structures were formed. The number of epithelial tips generated after 48 h exposure to ASA was reduced by 40% (0.2 mg/mL; P < 0.05) and 47% (0.4 mg/mL; P < 0.01). Finally, growth of PTGS2-/- and PTGS2+/- kidneys in organ culture showed no differences, indicating that PTGS2 derived PGE2 may at best have a minor role.
CONCLUSION: ASA reduces early renal growth and development but the role of prostaglandins in this may be minor
Effects of environmental factors on development of Pyrenopeziza brassicae (light leaf spot) apothecia on oilseed rape debris
Publication no. P-2001-0221-01R. This article is in the public domain and not copyrightable. It may be freely reprinted with customary crediting of the source. The American Phytopathological Society, 2001The development of Pyrenopeziza brassicae (light leaf spot) apothecia was studied on petiole debris from artificially infected oilseed rape leaves incubated at temperatures from 6 to 22 degreesC under different wetness regimes and in 16 h light/8 h dark or continuous darkness. There was no significant difference between light treatments in numbers of apothecia that developed. Mature apothecia developed at temperatures from 5 to 18 degreesC but not at 22 degreesC. The rate of apothecial development decreased as temperature decreased from 18 to 5 degreesC; mature apothecia were first observed after 5 days at 18 degreesC and after 15 days at 6 degreesC. Models were fitted to estimates of the time (days) for 50% of the maximum number of apothecia to develop (t(1); model 1, t(1) = 7.6 + 55.8(0.839)(T)) and the time for 50% of the maximum number of apothecia to decay (t(2); model 2, t(2) = 24.2 + 387(0.730)(T)) at temperatures (T) from 6 to 18 degreesC. An interruption in wetness of the petiole debris for 4 days after 4, 7, or 10 days of wetness delayed the time to observation of the first mature apothecia for approximate to4 days and decreased the number of apothecia produced (by comparison with continuous wetness). A relationship was found between water content of pod debris and electrical resistance measured by a debris-wetness sensor. The differences between values of tl predicted by model 1 and observed values of t(1) were 1 to 9 days. Model 2 did not predict t(2); apothecia decayed more quickly under natural conditions than predicted by model 2.Peer reviewe
Meteorological and landscape influences on pollen beetle immigration into oilseed rape crops
Heavy reliance on pesticide inputs to maintain crop yields has been an important aspect of agricultural intensification. Insecticide use has had detrimental impacts on pollinators and natural pest control agents, contributing to a decline in associated ecosystem services, and has also led to resistance development in pest populations. Throughout Europe, in oilseed rape (Brassica napus L.) crops, prophylactic use of insecticides against pollen beetles (Meligethes aeneus F. also known as Brassicogethes aeneus) has led to such issues, and there is an urgent need to develop more sustainable pest management practices for the crop. Although advice is available to oilseed rape growers regarding control thresholds, it may not be adhered to due to the expense of pollen beetle monitoring relative to the inexpensive cost of pyrethroid insecticides. Thus, the key to reducing prophylactic insecticide applications may lie with improved, less labour intensive methods of pollen beetle monitoring. For these to be realized, a better understanding is needed of the effects of agri-landscape features and meteorological conditions on pollen beetle immigration into the crop. In this study, based on data from four years of pollen beetle monitoring on a total of 41 field sites, we model the effects of meteorological (wind speed and direction, rainfall and accumulated temperature) and landscape (areas of woodland, residential gardens, the current and previous seasons’ oilseed rape crops, and lengths of hedgerows and treelines) variables on directional sticky trap catches, at both the single trap and field scales. Meteorological variables, particularly accumulated temperature and wind speed were more important than landscape variables in predicting the abundance of pollen beetles immigrating into OSR fields. Sticky traps that were facing downwind caught more beetles than those that were facing across-wind or upwind; this is the first study to show at a landscape-scale, direct evidence for use of upwind anemotaxis by pollen beetles at the point of entry during immigration into the crop. At the field scale, the area of oilseed rape grown in the previous season was found to be positively related to trap catch, but no relationships with other landscape variables were found. Optimally-placed monitoring traps could complement existing decision support systems to reduce pollen beetle monitoring effort and encourage use of insecticides only when control thresholds are breached, thus enhancing the sustainability of oilseed rape production. Knowledge of the area of oilseed rape crops grown during the previous season in the surrounding landscape could contribute to risk assessment of potential pest pressure for individual OSR crops
Multivariate spatial statistical analysis of longitudinal data in perennial crops
The advantages of using spatial analysis in annual crop experiments are well documented. There is much less evidence for perennial crops. For the sequence of measurements in perennial crops, apparently, there are no published articles in spatial analysis to date. This paper aimed at the comparison of several models, including auto-regressive, ante-dependence and character process models, in modelling sequences of measurements in perennial plants. The use of smoothed models, including splines, to give parsimonious response models, was also investigated. To access model performance, residual maximum likelihood ratio tests (LRT) and Akaike Criterion Information (AIC), were used. We analysed a total of 22,320 observations from 2 trials of tea plant concerning 5 yield annual measures through different spatial and non-spatial models. The classes of methods used were: (1) univariate spatial models for individual annual measures on each trial; (2) longitudinal non-spatial models for the several measures on each trial; (3) longitudinal and spatial models simultaneously for repeated measures in each trial. The main results obtained were: for individual analysis, the best model out of 19 was the row-column analysis + a first-order spatial auto-regressive (AR1 x AR1) correlated error + independent term error, which provided efficiency (ratio between adjusted heritabilities associated with spatial and non spatial models) between 1.09 and 1.76 over block analysis, i.e., between 9% and 76% of improvement; the same model, however, with a second-order spatial auto-regressive (AR2 x AR2) correlated error, was not superior to (AR1 x AR1); the traits (sequence measurements in consecutive years) gave approximately the same behaviour in terms of results across models; the repeatability and the full unconstrained models were not adequate for the sequences of measures, which exhibited considerable variance heterogeneity between traits and high correlation between measures, revealing a need for new modelling. In general, the best approaches involved the modelling of treatment effects by ante-dependence (SAD) or auto-regressive models with heterogeneous variance (ARH). When the spatial effects are important, a combination of first order spatial auto-regressive approach for modelling errors and a multivariate (including simpler options such as SAD and ARH) approach for modelling treatments effects should be used
- …