1,006 research outputs found

    Studies of Autumn calving suckler cows, bulls at pasture and winter grazing

    Get PDF
    End of project reportMost beef and dairy cows are spring calving leading to distinct seasonality of supply. Calving a proportion of the beef herd in the autumn would lead to a more uniform annual supply of cattle for slaughter and potentially increase the proportion of grazed grass in the diet of the suckler progeny. Autumn calving sucklers also facilitate the use of AI, which should enhance the product quality. This project aimed to address the technical aspects of autumn calving sucklers, which differ from those of spring calvers. The currently available international energy models were evaluated for autumn calving lactating suckler cows using the type of cow typically found in Irish suckler herds (Experiment 1). The winter accommodation of the suckler cow and calf unit and its impact on cow reproductive performance was evaluated (Experiment 2). The final part of the project evolved into component studies to determine the effect of supplementary feed on the performance of grazing bulls (Experiment 3), and the consequences of weanling cattle grazing pasture in winter as an alternative to housing them in winter (Experiments 4 to 7)

    Suppression of Bremsstrahlung at Non-Zero Temperature

    Full text link
    The first-order bremsstrahlung emission spectrum is αdω/ω\alpha d\omega/\omega at zero temperature. If the radiation is emitted into a region that contains a thermal distribution of photons, then the rate is increased by a factor 1+N(ω)1+N(\omega) where N(ω)N(\omega) is the Bose-Einstein function. The stimulated emission changes the spectrum to αTdω/ω2\alpha Td\omega/\omega^{2} for ωT\omega\ll T. If this were correct, an infinite amount of energy would be radiated in the low frequency modes. This unphysical result indicates a breakdown of perturbation theory. The paper computes the bremsstrahlung rate to all orders of perturbation theory, neglecting the recoil of the charged particle. When the perturbation series is summed, it has a different low-energy behavior. For ωαT\omega\ll\alpha T, the spectrum is independent of ω\omega and has a value proportional to dω/αTd\omega/\alpha T .Comment: 16 pages (plain TeX), figures available on reques

    THERMAL EFFECTS ON THE CATALYSIS BY A MAGNETIC FIELD

    Get PDF
    We show that the formation of condensates in the presence of a constant magnetic field in 2+1 dimensions is extremely unstable. It disappears as soon as a heat bath is introduced with or without a chemical potential. We point out some new nonanalytic behavior that develops in this system at finite temperature.Comment: 10 pages, plain Te

    Color, Spin and Flavor Diffusion in Quark-Gluon Plasmas

    Full text link
    In weakly interacting quark-gluon plasmas diffusion of color is found to be much slower than the diffusion of spin and flavor because color is easily exchanged by the gluons in the very singular forward scattering processes. If the infrared divergence is cut off by a magnetic mass, mmagαsTm_{mag}\sim \alpha_sT, the color diffusion is Dcolor(αsln(1/αs)T)1D_{color}\sim (\alpha_s\ln(1/\alpha_s)T)^{-1}, a factor αs\alpha_s smaller than spin and flavor diffusion. A similar effect is expected in electroweak plasmas above MWM_W due to W±W^\pm exchanges. The color conductivity in quark-gluon plasmas and the electrical conductivity in electroweak plasmas are correspondingly small in relativistic heavy ion collisions and the very early universe.Comment: 5 pages, no figure

    How fast can the wall move? A study of the electroweak phase transition dynamics

    Get PDF
    We consider the dynamics of bubble growth in the Minimal Standard Model at the electroweak phase transition and determine the shape and the velocity of the phase boundary, or bubble wall. We show that in the semi-classical approximation the friction on the wall arises from the deviation of massive particle populations from thermal equilibrium. We treat these with Boltzmann equations in a fluid approximation. This approximation is reasonable for the top quarks and the light species while it underestimates the friction from the infrared WW bosons and Higgs particles. We use the two-loop finite temperature effective potential and find a subsonic bubble wall for the whole range of Higgs masses 0<mH<900<m_H<90GeV. The result is weakly dependent on mHm_H: the wall velocity vwv_w falls in the range 0.36<vw<0.440.36<v_w<0.44, while the wall thickness is in the range 29>LT>2329> L T > 23 . The wall is thicker than the phase equilibrium value because out of equilibrium particles exert more friction on the back than on the base of a moving wall. We also consider the effect of an infrared gauge condensate which may exist in the symmetric phase; modelling it simplemindedly, we find that the wall may become supersonic, but not ultrarelativistic.Comment: 42 pages, plain latex, with three figures. Minor editing August 1 (we figured out how to do analytically some integrals we previously did numerically, made corresponding (slight) changes to numerical results, and corrected some typos.

    The graviton self-energy in thermal quantum gravity

    Get PDF
    We show generally that in thermal gravity, the one-particle irreducible 2-point function depends on the choice of the basic graviton fields. We derive the relevant properties of a physical graviton self-energy, which is independent of the parametrization of the graviton field. An explicit expression for the graviton self-energy at high-temperature is given to one-loop order.Comment: 13 pages, 2 figure

    Photon Dispersion in a Supernova Core

    Full text link
    While the photon forward-scattering amplitude on free magnetic dipoles (e.g. free neutrons) vanishes, the nucleon magnetic moments still contribute significantly to the photon dispersion relation in a supernova (SN) core where the nucleon spins are not free due to their interaction. We study the frequency dependence of the relevant spin susceptibility in a toy model with only neutrons which interact by one-pion exchange. Our approach amounts to calculating the photon absorption rate from the inverse bremsstrahlung process gamma n n --> n n, and then deriving the refractive index n_refr with the help of the Kramers-Kronig relation. In the static limit (omega --> 0) the dispersion relation is governed by the Pauli susceptibility chi_Pauli so that (n_refr)^2-1 approx chi_Pauli > 0. For omega somewhat above the neutron spin-relaxation rate Gamma_sigma we find (n_refr)^2-1> Gamma_sigma the photon dispersion relation acquires the form omega^2-k^2=(m_gamma)^2. An exact expression for the "transverse photon mass" m_gamma is given in terms of the f-sum of the neutron spin autocorrelation function; an estimate is (m_gamma)^2 approx chi_Pauli T Gamma_sigma. The dominant contribution to n_refr$ in a SN core remains the electron plasma frequency so that the Cherenkov processes gamma nu nu remain forbidden for all photon frequencies.Comment: 8 pages, REVTEX, 7 postscript figures include

    Fermion and Anti-Fermion Effective Masses in High Temperature Gauge Theories in CPCP-Asymmetric Background

    Full text link
    We calculate the splitting between fermion and anti-fermion effective masses in high temperature gauge theories in the presence of a non-vanishing chemical potential due to the CPCP-asymmetric fermionic background. In particular we consider the case of left-handed leptons in the SU(2)U(1)SU(2)\otimes U(1) theory when the temperature is above 250250 GeV and the gauge symmetry is restored.Comment: 13 pages, TIPAC-93001

    Structure of the Quark Propagator at High Temperature

    Get PDF
    In the high temperature, chirally invariant phase of QCD, the quark propagator is shown to have two sets of poles with different dispersion relations. A reflection property in momentum space relates all derivatives at zero-momentum of the particle and hole energies, the particle and hole damping rates, and the particle and hole residues. No use is made of perturbation theory.Comment: 8 pages, Latex twocolum

    Electroweak Baryogenesis and Standard Model CP Violation

    Full text link
    We analyze the mechanism of electroweak baryogenesis proposed by Farrar and Shaposhnikov in which the phase of the CKM mixing matrix is the only source of CPCP violation. This mechanism is based on a phase separation of baryons via the scattering of quasiparticles by the wall of an expanding bubble produced at the electroweak phase transition. In agreement with the recent work of Gavela, Hern\'andez, Orloff and P\`ene, we conclude that QCD damping effects reduce the asymmetry produced to a negligible amount. We interpret the damping as quantum decoherence. We compute the asymmetry analytically. Our analysis reflects the observation that only a thin, outer layer of the bubble contributes to the coherent scattering of the quasiparticles. The generality of our arguments rules out any mechanism of electroweak baryogenesis that does not make use of a new source of CPCP violation.Comment: 36 pages, in LaTeX, one LaTeX figure included, 5 others available upon request, SLAC-PUB-647
    corecore