1,775 research outputs found

    Gauge Independence of Limiting Cases of One-Loop Electron Dispersion Relation in High-Temperature QED

    Get PDF
    Assuming high temperature and taking subleading temperature dependence into account, gauge dependence of one-loop electron dispersion relation is investigated in massless QED at zero chemical potential. The analysis is carried out using a general linear covariant gauge. The equation governing the gauge dependence of the dispersion relation is obtained and used to prove that the dispersion relation is gauge independent in the limiting case of momenta much larger than eTeT. It is also shown that the effective mass is not influenced by the leading temperature dependence of the gauge dependent part of the effective self-energy. As a result the effective mass, which is of order eTeT, does not receive a correction of order e2Te^2T from one loop, independent of the gauge parameter.Comment: Revised and enlarged version, 14 pages, Revte

    Light-front Schwinger Model at Finite Temperature

    Full text link
    We study the light-front Schwinger model at finite temperature following the recent proposal in \cite{alves}. We show that the calculations are carried out efficiently by working with the full propagator for the fermion, which also avoids subtleties that arise with light-front regularizations. We demonstrate this with the calculation of the zero temperature anomaly. We show that temperature dependent corrections to the anomaly vanish, consistent with the results from the calculations in the conventional quantization. The gauge self-energy is seen to have the expected non-analytic behavior at finite temperature, but does not quite coincide with the conventional results. However, the two structures are exactly the same on-shell. We show that temperature does not modify the bound state equations and that the fermion condensate has the same behavior at finite temperature as that obtained in the conventional quantization.Comment: 10 pages, one figure, version to be published in Phys. Rev.

    Behavior of logarithmic branch cuts in the self-energy of gluons at finite temperature

    Get PDF
    We give a simple argument for the cancellation of the log(-k^2) terms (k is the gluon momentum) between the zero-temperature and the temperature-dependent parts of the thermal self-energy.Comment: 4 page

    On finite--temperature and --density radiative corrections to the neutrino effective potential in the early Universe

    Full text link
    Finite-temperature and -density radiative corrections to the neutrino effective potential in the otherwise CP-symmetric early Universe are considered in the real-time approach of Thermal Field Theory. A consistent perturbation theory endowed with the hard thermal loop resummation techniques developed by Braaten and Pisarski is applied. Special attention is focused on the question whether such corrections can generate any nonzero contribution to the CP-symmetric part of the neutrino potential, if the contact approximation for the W-propagator is used.Comment: 11 pages, revtex styl

    Suppression of Bremsstrahlung at Non-Zero Temperature

    Full text link
    The first-order bremsstrahlung emission spectrum is αdω/ω\alpha d\omega/\omega at zero temperature. If the radiation is emitted into a region that contains a thermal distribution of photons, then the rate is increased by a factor 1+N(ω)1+N(\omega) where N(ω)N(\omega) is the Bose-Einstein function. The stimulated emission changes the spectrum to αTdω/ω2\alpha Td\omega/\omega^{2} for ωT\omega\ll T. If this were correct, an infinite amount of energy would be radiated in the low frequency modes. This unphysical result indicates a breakdown of perturbation theory. The paper computes the bremsstrahlung rate to all orders of perturbation theory, neglecting the recoil of the charged particle. When the perturbation series is summed, it has a different low-energy behavior. For ωαT\omega\ll\alpha T, the spectrum is independent of ω\omega and has a value proportional to dω/αTd\omega/\alpha T .Comment: 16 pages (plain TeX), figures available on reques

    The Effect of Sodium Bicarbonate Ingestion on Back Squat and Bench Press Exercise to Failure

    Get PDF
    This study examined the acute effects of NaHCO3 ingestion on repetitions to failure and rating of perceived exertion in the back squat and bench press in trained men. Eight resistance-trained men took part in this double-blind, randomized crossover experimental study whereby they ingested NaHCO3 (0.3 g[middle dot]kg-1 body mass) or placebo (sodium chloride NaCl: 0.045 g[middle dot]kg-1 body mass) solution 60 minutes before completing a bout of resistance exercise (3 sets of bench press and back squat exercise to failure at an intensity of 80% 1 repetition maximum). Experimental conditions were separated by at least 48 hours. Participants completed more repetitions to failure in the back squat after NaHCO3 ingestion (p = 0.04) but not for bench press (p = 0.679). Mean +/- SD of total repetitions was 31.3 +/- 15.3 and 24.6 +/- 16.2 for back squat and 28.7 +/- 12.2 and 26.7 +/- 10.2 for bench press in NaHCO3 and placebo conditions, respectively. Repetitions to failure decreased as set increased for the back squat and bench press (p = 0.001, both). Rating of perceived exertion significantly increased with set for the back squat and bench press (p = 0.002, both). There was no significant change in blood lactate across time or between conditions. There were however treatment x time interactions for blood pH (p = 0.014) and blood HCO3 concentration (p = 0.001). After ingestion, blood pH and HCO3 (p = 0.008) concentrations were greater for the NaHCO3 condition compared with the placebo condition (p \u3c 0.001). The results of this study suggest that sodium bicarbonate ingestion can enhance resistance exercise performance using a repetition to failure protocol in the first exercise in a resistance exercise session

    On the Role of Chaos in the AdS/CFT Connection

    Get PDF
    The question of how infalling matter in a pure state forms a Schwarzschild black hole that appears to be at non-zero temperature is discussed in the context of the AdS/CFT connection. It is argued that the phenomenon of self-thermalization in non-linear (chaotic) systems can be invoked to explain how the boundary theory, initially at zero temperature self thermalizes and acquires a finite temperature. Yang-Mills theory is known to be chaotic (classically) and the imaginary part of the gluon self-energy (damping rate of the gluon plasma) is expected to give the Lyapunov exponent. We explain how the imaginary part would arise in the corresponding supergravity calculation due to absorption at the horizon of the black hole.Comment: 18 pages. Latex file. Minor changes. Final version to appear in Modern Physics Letters

    Energy and pressure densities of a hot quark-gluon plasma

    Get PDF
    We calculate the energy and hydrostatic pressure densities of a hot quark-gluon plasma in thermal equilibrium through diagrammatic analyses of the statistical average, Θμν\langle \Theta_{\mu \nu} \rangle, of the energy-momentum-tensor operator Θμν\Theta_{\mu \nu}. To leading order at high temperature, the energy density of the long wave length modes is consistently extracted by applying the hard-thermal-loop resummation scheme to the operator-inserted no-leg thermal amplitudes Θμν\langle \Theta_{\mu \nu} \rangle. We find that, for the long wave length gluons, the energy density, being positive, is tremendously enhanced as compared to the noninteracting case, while, for the quarks, no noticeable deviation from the noninteracting case is found.Comment: 33 pages. Figures are not include

    The Boltzmann Equation in Scalar Field Theory

    Get PDF
    We derive the classical transport equation, in scalar field theory with a V(phi) interaction, from the equation of motion for the quantum field. We obtain a very simple, but iterative, expression for the effective action which generates all the n-point Green functions in the high-temperature limit. An explicit closed form is given in the static case.Comment: 10 pages, using RevTeX (corrected TeX misprints

    Fermion and Anti-Fermion Effective Masses in High Temperature Gauge Theories in CPCP-Asymmetric Background

    Full text link
    We calculate the splitting between fermion and anti-fermion effective masses in high temperature gauge theories in the presence of a non-vanishing chemical potential due to the CPCP-asymmetric fermionic background. In particular we consider the case of left-handed leptons in the SU(2)U(1)SU(2)\otimes U(1) theory when the temperature is above 250250 GeV and the gauge symmetry is restored.Comment: 13 pages, TIPAC-93001
    corecore