research

On the Role of Chaos in the AdS/CFT Connection

Abstract

The question of how infalling matter in a pure state forms a Schwarzschild black hole that appears to be at non-zero temperature is discussed in the context of the AdS/CFT connection. It is argued that the phenomenon of self-thermalization in non-linear (chaotic) systems can be invoked to explain how the boundary theory, initially at zero temperature self thermalizes and acquires a finite temperature. Yang-Mills theory is known to be chaotic (classically) and the imaginary part of the gluon self-energy (damping rate of the gluon plasma) is expected to give the Lyapunov exponent. We explain how the imaginary part would arise in the corresponding supergravity calculation due to absorption at the horizon of the black hole.Comment: 18 pages. Latex file. Minor changes. Final version to appear in Modern Physics Letters

    Similar works

    Available Versions

    Last time updated on 01/04/2019