1,779 research outputs found

    Japan's 2011 disaster: A grounded theory study of resilience in vicariously exposed Japanese citizens

    Get PDF
    Disasters are stressors and Post-disaster psychological interventions (PDIs) are designed to promote resiliency in affected populations; there is no supportive evidence that such interventions are effective in reducing or preventing clinical symptoms of PSTD. The purpose of this study was to explore how vicariously exposed Japanese citizens living in the UK responded to Japan's 2011 disaster, and how their responses may support the aims of PDIs and resiliency. A qualitative design using a snowball sampling method and semi-structured interview was conducted and analysed using grounded theory. Participants (n=18; m = 3, f = 15), who had lived in the UK for an average of 13.3 years, attended face to face interviews. They reflected on their thoughts, feelings, and behaviours from first hearing of the disaster. A preliminary grounded theory revealed the psychological process of appraisal and identification as drivers of establishing safety, helping responses and the development of a disaster narrative. The resultant theory supported the aims of PDIs, but highlighted the potential of disaster ‘victims’ utilising existing skills in the disaster to create a personal narrative of self-efficacy (resilience) in overcome feeling of helplessness in the disaster context. William James noted this phenomena during his experience of the San Francisco earthquake of 1906

    The World History of Science Online: A Project of the Commission on Bibliography and Documentation

    Get PDF

    On finite--temperature and --density radiative corrections to the neutrino effective potential in the early Universe

    Full text link
    Finite-temperature and -density radiative corrections to the neutrino effective potential in the otherwise CP-symmetric early Universe are considered in the real-time approach of Thermal Field Theory. A consistent perturbation theory endowed with the hard thermal loop resummation techniques developed by Braaten and Pisarski is applied. Special attention is focused on the question whether such corrections can generate any nonzero contribution to the CP-symmetric part of the neutrino potential, if the contact approximation for the W-propagator is used.Comment: 11 pages, revtex styl

    Gauge Independence of Limiting Cases of One-Loop Electron Dispersion Relation in High-Temperature QED

    Get PDF
    Assuming high temperature and taking subleading temperature dependence into account, gauge dependence of one-loop electron dispersion relation is investigated in massless QED at zero chemical potential. The analysis is carried out using a general linear covariant gauge. The equation governing the gauge dependence of the dispersion relation is obtained and used to prove that the dispersion relation is gauge independent in the limiting case of momenta much larger than eTeT. It is also shown that the effective mass is not influenced by the leading temperature dependence of the gauge dependent part of the effective self-energy. As a result the effective mass, which is of order eTeT, does not receive a correction of order e2Te^2T from one loop, independent of the gauge parameter.Comment: Revised and enlarged version, 14 pages, Revte

    Light-front Schwinger Model at Finite Temperature

    Full text link
    We study the light-front Schwinger model at finite temperature following the recent proposal in \cite{alves}. We show that the calculations are carried out efficiently by working with the full propagator for the fermion, which also avoids subtleties that arise with light-front regularizations. We demonstrate this with the calculation of the zero temperature anomaly. We show that temperature dependent corrections to the anomaly vanish, consistent with the results from the calculations in the conventional quantization. The gauge self-energy is seen to have the expected non-analytic behavior at finite temperature, but does not quite coincide with the conventional results. However, the two structures are exactly the same on-shell. We show that temperature does not modify the bound state equations and that the fermion condensate has the same behavior at finite temperature as that obtained in the conventional quantization.Comment: 10 pages, one figure, version to be published in Phys. Rev.

    Behavior of logarithmic branch cuts in the self-energy of gluons at finite temperature

    Get PDF
    We give a simple argument for the cancellation of the log(-k^2) terms (k is the gluon momentum) between the zero-temperature and the temperature-dependent parts of the thermal self-energy.Comment: 4 page

    THERMAL EFFECTS ON THE CATALYSIS BY A MAGNETIC FIELD

    Get PDF
    We show that the formation of condensates in the presence of a constant magnetic field in 2+1 dimensions is extremely unstable. It disappears as soon as a heat bath is introduced with or without a chemical potential. We point out some new nonanalytic behavior that develops in this system at finite temperature.Comment: 10 pages, plain Te

    Suppression of Bremsstrahlung at Non-Zero Temperature

    Full text link
    The first-order bremsstrahlung emission spectrum is αdω/ω\alpha d\omega/\omega at zero temperature. If the radiation is emitted into a region that contains a thermal distribution of photons, then the rate is increased by a factor 1+N(ω)1+N(\omega) where N(ω)N(\omega) is the Bose-Einstein function. The stimulated emission changes the spectrum to αTdω/ω2\alpha Td\omega/\omega^{2} for ωâ‰ȘT\omega\ll T. If this were correct, an infinite amount of energy would be radiated in the low frequency modes. This unphysical result indicates a breakdown of perturbation theory. The paper computes the bremsstrahlung rate to all orders of perturbation theory, neglecting the recoil of the charged particle. When the perturbation series is summed, it has a different low-energy behavior. For ωâ‰ȘαT\omega\ll\alpha T, the spectrum is independent of ω\omega and has a value proportional to dω/αTd\omega/\alpha T .Comment: 16 pages (plain TeX), figures available on reques

    Energy and pressure densities of a hot quark-gluon plasma

    Get PDF
    We calculate the energy and hydrostatic pressure densities of a hot quark-gluon plasma in thermal equilibrium through diagrammatic analyses of the statistical average, ⟚ΘΌΜ⟩\langle \Theta_{\mu \nu} \rangle, of the energy-momentum-tensor operator ΘΌΜ\Theta_{\mu \nu}. To leading order at high temperature, the energy density of the long wave length modes is consistently extracted by applying the hard-thermal-loop resummation scheme to the operator-inserted no-leg thermal amplitudes ⟚ΘΌΜ⟩\langle \Theta_{\mu \nu} \rangle. We find that, for the long wave length gluons, the energy density, being positive, is tremendously enhanced as compared to the noninteracting case, while, for the quarks, no noticeable deviation from the noninteracting case is found.Comment: 33 pages. Figures are not include

    Structure of the Quark Propagator at High Temperature

    Get PDF
    In the high temperature, chirally invariant phase of QCD, the quark propagator is shown to have two sets of poles with different dispersion relations. A reflection property in momentum space relates all derivatives at zero-momentum of the particle and hole energies, the particle and hole damping rates, and the particle and hole residues. No use is made of perturbation theory.Comment: 8 pages, Latex twocolum
    • 

    corecore