212 research outputs found
Allen Telescope Array Multi-Frequency Observations of the Sun
We present the first observations of the Sun with the Allen Telescope Array
(ATA). We used up to six frequencies, from 1.43 to 6 GHz, and baselines from 6
to 300 m. To our knowledge, these are the first simultaneous multifrequency
full-Sun maps obtained at microwave frequencies without mosaicing. The
observations took place when the Sun was relatively quiet, although at least
one active region was present each time. We present multi-frequency flux
budgets for each sources on the Sun. Outside of active regions, assuming
optically thin bremsstrahlung (free--free) coronal emission on top of an
optically thick ~10 000 K chromosphere, the multi-frequency information can be
condensed into a single, frequency-independent, "coronal bremsstrahlung
contribution function" [EM/sqrt(T)] map. This technique allows the separation
of the physics of emission as well as a measurement of the density structure of
the corona. Deviations from this simple relationship usually indicate the
presence of an additional gyroresonance-emission component, as is typical in
active regions.Comment: 16 pages, 11 figures. Accepted for publication in Solar Physic
Curved Tails in Polymerization-Based Bacterial Motility
The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a
visually striking signature of actin polymerization-based motility. Similar
actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae,
the Vaccinia virus, and vesicles and microspheres in related in vitro systems.
We show that the torque required to produce the curvature in the tail can arise
from randomly placed actin filaments pushing the bacterium or particle. We find
that the curvature magnitude determines the number of actively pushing
filaments, independent of viscosity and of the molecular details of force
generation. The variation of the curvature with time can be used to infer the
dynamics of actin filaments at the bacterial surface.Comment: 8 pages, 2 figures, Latex2
Tests of sunspot number sequences: 1. Using ionosonde data
More than 70 years ago it was recognised that ionospheric F2-layer critical frequencies [foF2] had a strong relationship to sunspot number. Using historic datasets from the Slough and Washington ionosondes, we evaluate the best statistical fits of foF2 to sunspot numbers (at each Universal Time [UT] separately) in order to search for drifts and abrupt changes in the fit residuals over Solar Cycles 17-21. This test is carried out for the original composite of the Wolf/Zürich/International sunspot number [R], the new “backbone” group sunspot number [RBB] and the proposed “corrected sunspot number” [RC]. Polynomial fits are made both with and without allowance for the white-light facular area, which has been reported as being associated with cycle-to-cycle changes in the sunspot number - foF2 relationship. Over the interval studied here, R, RBB, and RC largely differ in their allowance for the “Waldmeier discontinuity” around 1945 (the correction factor for which for R, RBB and RC is, respectively, zero, effectively over 20 %, and explicitly 11.6 %). It is shown that for Solar Cycles 18-21, all three sunspot data sequences perform well, but that the fit residuals are lowest and most uniform for RBB. We here use foF2 for those UTs for which R, RBB, and RC all give correlations exceeding 0.99 for intervals both before and after the Waldmeier discontinuity. The error introduced by the Waldmeier discontinuity causes R to underestimate the fitted values based on the foF2 data for 1932-1945 but RBB overestimates them by almost the same factor, implying that the correction for the Waldmeier discontinuity inherent in RBB is too large by a factor of two. Fit residuals are smallest and most uniform for RC and the ionospheric data support the optimum discontinuity multiplicative correction factor derived from the independent Royal Greenwich Observatory (RGO) sunspot group data for the same interval
Multiplex-GAM: genome-wide identification of chromatin contacts yields insights overlooked by Hi-C
Technology for measuring 3D genome topology is increasingly important for studying gene regulation, for genome assembly and for mapping of genome rearrangements. Hi-C and other ligation-based methods have become routine but have specific biases. Here, we develop multiplex-GAM, a faster and more affordable version of genome architecture mapping (GAM), a ligation-free technique that maps chromatin contacts genome-wide. We perform a detailed comparison of multiplex-GAM and Hi-C using mouse embryonic stem cells. When examining the strongest contacts detected by either method, we find that only one-third of these are shared. The strongest contacts specifically found in GAM often involve ‘active’ regions, including many transcribed genes and super-enhancers, whereas in Hi-C they more often contain ‘inactive’ regions. Our work shows that active genomic regions are involved in extensive complex contacts that are currently underestimated in ligation-based approaches, and highlights the need for orthogonal advances in genome-wide contact mapping technologies
Influence of genetic variants on gene expression in human pancreatic islets – implications for type 2 diabetes
Most signals detected by genome-wide association studies map to non-coding sequence and their tissue-specific effects influence transcriptional regulation. However, many key tissues and cell-types required for appropriate functional inference are absent from large-scale resources such as ENCODE and GTEx. We explored the relationship between genetic variants influencing predisposition to type 2 diabetes (T2D) and related glycemic traits, and human pancreatic islet transcription using RNA-Seq and genotyping data from 420 islet donors. We find: (a) eQTLs have a variable replication rate across the 44 GTEx tissues (<73%), indicating that our study captured islet-specific cis-eQTL signals; (b) islet eQTL signals show marked overlap with islet epigenome annotation, though eQTL effect size is reduced in the stretch enhancers most strongly implicated in GWAS signal location; (c) selective enrichment of islet eQTL overlap with the subset of T2D variants implicated in islet dysfunction; and (d) colocalization between islet eQTLs and variants influencing T2D or related glycemic traits, delivering candidate effector transcripts at 23 loci, including DGKB and TCF7L2. Our findings illustrate the advantages of performing functional and regulatory studies in tissues of greatest disease-relevance while expanding our mechanistic insights into complex traits association loci activity with an expanded list of putative transcripts implicated in T2D development
Separation of the Longitudinal and Transverse Cross Sections in the p(ee'K)Lambda and p(ee'K)Sigma Reactions
We report measurements of cross sections for the reaction p(e,e'K)Y, for both
the Lambda and Sigma_0 hyperon states, at an invariant mass of W=1.84 GeV and
four-momentum transfers 0.5<Q2<2 (GeV/c)2. Data were taken for three values of
virtual photon polarization, allowing the decomposition of the cross sections
into longitudinal and transverse components. The Lambda data is a revised
analysis of prior work, whereas the Sigma_0 results have not been previously
reported.Comment: 17 pages, 18 figures, REVTEX 4, submitted to Physical Review
Separation of the Longitudinal and Transverse Cross Sections in the p(e, e′K+)Λ and p(e, e′K+)Σ0 Reactions
We report measurements of cross sections for the reaction p(e,e′K+)Y, for both the Λ and Σ0 hyperon states, at an invariant mass of W =1.84 GeV and four-momentum transfers 0.5 < Q2 < 2 (GeV/c)2. Data were taken for three values of virtual photon polarization ε, allowing the decom- position of the cross sections into longitudinal and transverse components. The Λ data is a revised analysis of prior work, whereas the Σ0 results have not been previously reported
- …