88 research outputs found

    LRG-BEASTS: Evidence for clouds in the transmission spectrum of HATS-46 b

    Get PDF
    We have performed low-resolution ground-based spectroscopy of HATS-46 b in transmission, using the EFOSC2 instrument on the ESO New Technology Telescope (NTT). HATS-46 b is a highly-inflated exoplanet that is a prime target for transmission spectroscopy, having a Jupiter-like radius (0.95 RJup_\textrm{Jup}) but a much lower mass (0.16 MJup_\textrm{Jup}). It orbits a G-type star with a 4.7 d period, giving an equilibrium temperature of 1100 K. We observed one transit of HATS-46 b with the NTT, with the time-series spectra covering a wavelength range of 3900 - 9000 Angstrom at a resolution of R∼380R \sim 380. We achieved a remarkably precise transmission spectrum of 1.03 ×\times photon noise, with a median uncertainty of 357357 ppm for ∼200\sim 200 Angstrom wide bins, despite the relative faintness of the host star with Vmag=13.6V_{\mathrm{mag}} = 13.6. The transmission spectrum does not show strong absorption features and retrievals favour a cloudy model, ruling out a clear atmosphere with 3.0σ3.0\sigma confidence. We also place a conservative upper limit on the sodium abundance under the alternative scenario of a clear atmosphere. This is the eighth planet in the LRG-BEASTS survey, which uses 4m-class telescopes such as the NTT to obtain low-resolution transmission spectra of hot Jupiters with precisions of around one atmospheric scale height.Comment: 10 pages, 7 figures, 4 tables, accepted for publication in MNRA

    The GTC exoplanet transit spectroscopy survey IX. Detection of haze, Na, K, and Li in the super-Neptune WASP-127b

    Get PDF
    Exoplanets with relatively clear atmospheres are prime targets for detailed studies of chemical compositions and abundances in their atmospheres. Alkali metals have long been suggested to exhibit broad wings due to pressure broadening, but most of the alkali detections only show very narrow absorption cores, probably because of the presence of clouds. We report the strong detection of the pressure-broadened spectral profiles of Na, K, and Li absorption in the atmosphere of the super-Neptune WASP-127b, at 4.1σ\sigma, 5.0σ\sigma, and 3.4σ\sigma, respectively. We performed a spectral retrieval modeling on the high-quality optical transmission spectrum newly acquired with the 10.4 m Gran Telescopio Canarias (GTC), in combination with the re-analyzed optical transmission spectrum obtained with the 2.5 m Nordic Optical Telescope (NOT). By assuming a patchy cloudy model, we retrieved the abundances of Na, K, and Li, which are super-solar at 3.7σ\sigma for K and 5.1σ\sigma for Li (and only 1.8σ\sigma for Na). We constrained the presence of haze coverage to be around 52%. We also found a hint of water absorption, but cannot constrain it with the global retrieval owing to larger uncertainties in the probed wavelengths. WASP-127b will be extremely valuable for atmospheric characterization in the era of James Webb Space Telescope

    Methane Throughout the Atmosphere of the Warm Exoplanet WASP-80b

    Full text link
    The abundances of major carbon and oxygen bearing gases in the atmospheres of giant exoplanets provide insights into atmospheric chemistry and planet formation processes. Thermochemistry suggests that methane should be the dominant carbon-bearing species below ∼\sim1000 K over a range of plausible atmospheric compositions; this is the case for the Solar System planets and has been confirmed in the atmospheres of brown dwarfs and self-luminous directly imaged exoplanets. However, methane has not yet been definitively detected with space-based spectroscopy in the atmosphere of a transiting exoplanet, but a few detections have been made with ground-based, high-resolution transit spectroscopy including a tentative detection for WASP-80b. Here we report transmission and emission spectra spanning 2.4-4.0 micrometers of the 825 K warm Jupiter WASP-80b taken with JWST's NIRCam instrument, both of which show strong evidence for methane at greater than 6-sigma significance. The derived methane abundances from both viewing geometries are consistent with each other and with solar to sub-solar C/O and ~5×\times solar metallicity, which is consistent with theoretical predictions.Comment: 23 pages, 10 figures, 3 tables. This preprint has been submitted to and accepted in principle for publication in Nature without significant change

    A benchmark JWST near-infrared spectrum for the exoplanet WASP-39 b

    Get PDF
    Observing exoplanets through transmission spectroscopy supplies detailed information about their atmospheric composition, physics and chemistry. Before the James Webb Space Telescope (JWST), these observations were limited to a narrow wavelength range across the near-ultraviolet to near-infrared, alongside broadband photometry at longer wavelengths. To understand more complex properties of exoplanet atmospheres, improved wavelength coverage and resolution are necessary to robustly quantify the influence of a broader range of absorbing molecular species. Here we present a combined analysis of JWST transmission spectroscopy across four different instrumental modes spanning 0.5–5.2 μm using Early Release Science observations of the Saturn-mass exoplanet WASP-39 b. Our uniform analysis constrains the orbital and stellar parameters within subpercentage precision, including matching the precision obtained by the most precise asteroseismology measurements of stellar density to date, and it further confirms the presence of Na, K, H2O, CO, CO2 and SO2 as atmospheric absorbers. Through this process, we have improved the agreement between the transmission spectra of all modes, except for the NIRSpec PRISM, which is affected by partial saturation of the detector. This work provides strong evidence that uniform light curve analysis is an important aspect to ensuring reliability when comparing the high-precision transmission spectra provided by JWST

    Awesome SOSS: atmospheric characterization of WASP-96 b using the JWST early release observations

    Get PDF
    This is the final version. Available on open access from Oxford University Press via the DOI in this recordData availability: All data used in this study are publicly available from the Barbara A. Mikulski Archive for Space Telescopes; https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html. The models generated in this paper can be made available on request.The newly operational JWST offers the potential to study the atmospheres of distant worlds with precision that has not been achieved before. One of the first exoplanets observed by JWST in the summer of 2022 was WASP-96 b, a hot Saturn orbiting a G8 star. As a part of the Early Release Observations programme, one transit of WASP-96 b was observed with NIRISS/SOSS to capture its transmission spectrum from 0.6 to 2.85 μm. In this work, we utilize four retrieval frameworks to report precise and robust measurements of WASP-96 b's atmospheric composition. We constrain the logarithmic volume mixing ratios of multiple chemical species in its atmosphere, including: H2O =, CO2 =, and K =, thus generally consistent with 1× solar (with the exception of CO2). Notably, our results offer a first abundance constraint on potassium in WASP-96 b's atmosphere and important inferences on carbon-bearing species such as CO2 and CO. Our short wavelength NIRISS/SOSS data are best explained by the presence of an enhanced Rayleigh scattering slope, despite previous inferences of a clear atmosphere - although we find no evidence for a grey cloud deck. Finally, we explore the data resolution required to appropriately interpret observations using NIRISS/SOSS. We find that our inferences are robust against different binning schemes. That is, from low R = 125 to the native resolution of the instrument, the bulk atmospheric properties of the planet are consistent. Our systematic analysis of these exquisite observations demonstrates the power of NIRISS/SOSS to detect and constrain multiple molecular and atomic species in the atmospheres of hot giant planets

    The Roasting Marshmallows Program with IGRINS on Gemini South I: Composition and Climate of the Ultra Hot Jupiter WASP-18 b

    Get PDF
    We present high-resolution dayside thermal emission observations of the exoplanet WASP-18b using IGRINS on Gemini South. We remove stellar and telluric signatures using standard algorithms, and we extract the planet signal via cross correlation with model spectra. We detect the atmosphere of WASP-18b at a signal-to-noise ratio (SNR) of 5.9 using a full chemistry model, measure H2O (SNR=3.3), CO (SNR=4.0), and OH (SNR=4.8) individually, and confirm previous claims of a thermal inversion layer. The three species are confidently detected (>4σ\sigma) with a Bayesian inference framework, which we also use to retrieve abundance, temperature, and velocity information. For this ultra-hot Jupiter (UHJ), thermal dissociation processes likely play an important role. Retrieving abundances constant with altitude and allowing the temperature-pressure profile to freely adjust results in a moderately super-stellar carbon to oxygen ratio (C/O=0.75^{+0.14}_{-0.17}) and metallicity ([M/H]=1.03^{+0.65}_{-1.01}). Accounting for undetectable oxygen produced by thermal dissociation leads to C/O=0.45^{+0.08}_{-0.10} and [M/H]=1.17^{+0.66}_{-1.01}. A retrieval that assumes radiative-convective-thermochemical-equilibrium and naturally accounts for thermal dissociation constrains C/O<0.34 (2σ\sigma) and [M/H]=0.48^{+0.33}_{-0.29}, in line with the chemistry of the parent star. Looking at the velocity information, we see a tantalising signature of different Doppler shifts at the level of a few km/s for different molecules, which might probe dynamics as a function of altitude and location on the planet disk. Our results demonstrate that ground-based, high-resolution spectroscopy at infrared wavelengths can provide meaningful constraints on the compositions and climate of highly irradiated planets. This work also elucidates potential pitfalls with commonly employed retrieval assumptions when applied to UHJ spectra.Comment: 27 pages, 18 figures, submitted to AAS Journals. Community feedback welcom
    • …
    corecore