33 research outputs found

    風格的完成

    Full text link

    張愛玲的香港時期小說, 1952-1955

    No full text
    tocpublished_or_final_versionabstractChineseMasterMaster of Philosoph

    The influence of Eileen Chang and her followers in Taiwan=

    No full text
    abstractpublished_or_final_versionChineseDoctoralDoctor of Philosoph

    Estimating the Surface Air Temperature by Remote Sensing in Northwest China Using an Improved Advection-Energy Balance for Air Temperature Model

    Get PDF
    To estimate the surface air temperature by remote sensing, the advection-energy balance for the surface air temperature (ADEBAT) model is developed which assumes the surface air temperature is driven by the local driving force and the advective driving force. The local driving force produces a local surface air temperature whereas the advective driving force changes it by adding an exotic air temperature. An advection factor f is defined to measure the quantity of the exotic air brought by the advection. Since the f is determined by the advection, this paper improves it to a regional scale by using the Inverse Distance Weighting (IDW) method whereas the original ADEBAT model uses a constant of f for a block of area. Results retrieved by the improved ADEBAT (IADEBAT) model are evaluated and comparison was made with the in situ measurements, with an R2 (correlation coefficient) of 0.77, an RMSE (Root Mean Square Error) of 0.31 K, and a MAE (Mean Absolute Error) of 0.24 K. The evaluation shows that the IADEBAT model has higher accuracy than the original ADEBAT model. Evaluations together with a t-test of the MAD (Mean Absolute Deviation) reveal that the IADEBAT model has a significant improvement

    Regional Estimation of Remotely Sensed Evapotranspiration Using the Surface Energy Balance-Advection (SEB-A) Method

    No full text
    Evapotranspiration (ET) is an essential part of the hydrological cycle and accurately estimating it plays a crucial role in water resource management. Surface energy balance (SEB) models are widely used to estimate regional ET with remote sensing. The presence of horizontal advection, however, perturbs the surface energy balance system and contributes to the uncertainty of energy influxes. Thus, it is vital to consider horizontal advection when applying SEB models to estimate ET. This study proposes an innovative and simplified approach, the surface energy balance-advection (SEB-A) method, which is based on the energy balance theory and also takes into account the horizontal advection to determine ET by remote sensing. The SEB-A method considers that the actual ET consists of two parts: the local ET that is regulated by the energy balance system and the exotic ET that arises from horizontal advection. To evaluate the SEB-A method, it was applied to the middle region of the Heihe River in China. Instantaneous ET for three days were acquired and assessed with ET measurements from eddy covariance (EC) systems. The results demonstrated that the ET estimates had a high accuracy, with a correlation coefficient (R2) of 0.713, a mean average error (MAE) of 39.3 W/m2 and a root mean square error (RMSE) of 54.6 W/m2 between the estimates and corresponding measurements. Percent error was calculated to more rigorously assess the accuracy of these estimates, and it ranged from 0% to 35%, with over 80% of the locations within a 20% error. To better understand the SEB-A method, the relationship between the ET estimates and land use types was analyzed, and the results indicated that the ET estimates had spatial distributions that correlated with vegetation patterns and could well demonstrate the ET differences caused by different land use types. The sensitivity analysis suggested that the SEB-A method requested accurate estimation of the available energy, R n − G , but was less constrained with the difference between ground and air temperature, T 0 − T a – l o c

    Tuning the Reaction Selectivity over MgAl Spinel-Supported Pt Catalyst in Furfuryl Alcohol Conversion to Pentanediols

    No full text
    Catalytic conversion of biomass-derived feedstock to high-value chemicals is of remarkable significance for alleviating dependence on fossil energy resources. MgAl spinel-supported Pt catalysts were prepared and used in furfuryl alcohol conversion. The approaches to tune the reaction selectivity toward pentanediols (PeDs) were investigated and the catalytic performance was correlated to the catalysts’ physicochemical properties based on comprehensive characterizations. It was found that 1–8 wt% Pt was highly dispersed on the MgAl2O4 support as nanoparticles with small sizes of 1–3 nm. The reaction selectivity did not show dependence on the size of Pt nanoparticles. Introducing LiOH onto the support effectively steered the reaction products toward the PeDs at the expense of tetrahydrofurfuryl alcohol (THFA) selectivity. Meanwhile, the major product in PeDs was shifted from 1,5-PeD to 1,2-PeD. The reasons for the PeDs selectivity enhancement were attributed to the generation of a large number of medium-strong base sites on the Li-modified Pt catalyst. The reaction temperature is another effective factor to tune the reaction selectivity. At 230 °C, PeDs selectivity was enhanced to 77.4% with a 1,2-PeD to 1,5-PeD ratio of 3.7 over 4Pt/10Li/MgAl2O4. The Pt/Li/MgAl2O4 catalyst was robust to be reused five times without deactivation

    Strike-Slip Fault Effects on Diversity of the Ediacaran Mound-Shoal Distribution in the Central Sichuan Intracratonic Basin, China

    No full text
    The largest Precambrian gasfield in China has been found from the Ediacaran (Sinian) carbonates in the central Sichuan Basin. The deep ancient reservoirs were generally attributed to the high-energy mound-shoal body in the carbonate platform. However, there is still little understanding on the distribution of the mound-shoal bodies that hampers further gas exploitation from the deep subsurface. Based on the seismic data, a large strike-slip fault system was identified by new 3D seismic data in the central Sichuan Basin. Further, it was found that the strike-slip fault had some effects on the mound-shoal bodies of the Ediacaran Dengying Formation. First, the platform margin was divided by strike-slip faults into three distinct segments to show two weak-rimmed margins and one interbedded rimmed margin. Second, the platform margin could be offset or migrated with the strike-slip faults. Third, there is varied margin thickness across the strike-slip fault zone. In the inner platform, more carbonate mound-shoal bodies developed behind the weak-rimmed margin that was divided by the strike-slip fault zones. In addition, the mound-shoal bodies may be separated by faulted sag. Further, the mound-shoal bodies may have developed along the faulted higher position in one side of the strike-slip fault zone. These patterns of the mound-shoal bodies suggest that the strike-slip fault had an important role in the sedimentary microfacies’ diversity in the intracratonic carbonates. The low displacement of the strike-slip fault is chiefly responsible for a weaker controlling effect on the microfacies change in the intracratonic basin rather than other tectonic settings

    Establishment and optimization of an in vitro guinea pig oocyte maturation system.

    No full text
    Guinea pigs are a valuable animal model for studying various diseases, including reproductive diseases. However, techniques for generating embryos via embryo engineering in guinea pigs are limited; for instance, in vitro maturation (IVM) technique is preliminary for guinea pig oocytes. In this study, we aimed to establish and optimize an IVM method for guinea pig oocytes by investigating various factors, such as superovulation induced by different hormones, culture supplementation (e.g., amino acids, hormone, and inhibitors), culture conditions (e.g., oocyte type, culture medium type, and treatment time), and in vivo hCG stimulation. We found that oocytes collected from guinea pigs with superovulation induced by hMG have a higher IVM rate compared to those collected from natural cycling individuals. Moreover, we found that addition of L-cysteine, cystine, and ROS in the culture medium can increase the IVM rate. In addition, we demonstrated that in vivo stimulation with hCG for 3-8 h can further increase the IVM rate. As a result, the overall IVM rate of guinea pig oocytes under our optimized conditions can reach ~69%, and the mature oocytes have high GSH levels and normal morphology. In summary, we established an effective IVM method for guinea pig oocytes by optimizing various factors and conditions, which provides a basis for embryo engineering using guinea pigs as a model

    Synthesis of bioderived polycarbonates with adjustable molecular weights catalyzed by phenolic-derived ionic liquids

    No full text
    The synthesis of high-molecular-weight bioderived polycarbonates via green routes and regulation of molecular weight is of great significance and is highly challenging. Herein, a green sequential approach toward the synthesis of bio-derived polycarbonates with adjustable molecular weights from isosorbide and dimethyl carbonate (DMC) has been developed by employing ionic liquids (ILs) as a class of eco-friendly catalysts. The structures of IL catalysts can be designed readily to control the molecular weight of isosorbide-derived polycarbonates (PIC), which is an attractive advantage of IL catalysts instead of the conventional metal-containing catalysts. In the presence of the [Bmim][4-I-Phen] catalyst, the PIC weight-average molecular weight (M-w) can reach 50 300 g mol(-1). By the combination of the experimental results and DFT calculations, an IL anion-cation synergistic catalytic polymerization mechanism has been proposed, which reveals the nucleophile-electrophile dual activation by H-bonds and charge-charge interactions in catalyzing the formation of PIC. The significance of this study is that it provides guidance for developing IL catalysts for synthesizing higher molecular weight polycarbonates, thereby conveniently leading to a variety of polymers with tunable properties
    corecore