41 research outputs found

    ADVANCEMENTS IN QUANTITATIVE PERFUSION MAGNETIC RESONANCE IMAGING (MRI) OF DEMENTIA

    Get PDF
    Alzheimer's disease (AD) affects a considerable, and increasing, part of the population. Early diagnosis of AD is very important to permit effective therapy, and minimize AD's social and economic burden. The goal of our research is to evaluate the changes of cerebral perfusion (i.e., blood flow) in the early stages of AD and the effects from hypertension.We studied volunteers with Mild Cognitive Impairment (MCI) and early AD from the Pittsburgh cohort of the Cardiovascular Health Study (CHS) Cognitive Study during a four-year follow-up. Previously, studies used referral patients who typically have more advanced AD. No perfusion data concerning the early and transitional disease stages are currently available from population studies (i.e., subjects who have been monitored longitudinally in time). There are no common techniques for perfusion quantification and image analysis so that inconsistencies are observed between/within studies, modalities, and researchers. Several advancements were achieved in preparation for the cohort study. First, we improved the accuracy and speed of brain perfusion quantification. Second, we improved the accuracy of image registration to a reference brain using quantitative validation of a registration method and performance comparison with a popular registration method. Third, we improved the method of statistical analysis for evaluating the changes of perfusion between groups. Fourth, we evaluated the changes of cerebral perfusion between cognitive groups (controls, MCIs, ADs), and hypertension and normo-tensive subgroups.Individual perfusion maps were improved by measuring and incorporating individual arrival time, saturation effects, and individual inversion efficiency. A fully deformable registration technique was shown to be more accurate than standard techniques like statistical parametric mapping to detect local perfusion changes. All of the published literature for perfusion up-to-date reported decreased perfusion in AD, but we found hyperperfusion in some regions. The regional findings imply that a hemodynamic process, at the capillary level, accompanied the neurodegenerative process. Hypertensive normal cognitive controls demonstrated hypoperfusion in regions usually involved in AD pathology. However, the effect of hypertension was attenuated after the onset of the pathological cognitive process

    Uniform Asymptotics of Orthogonal Polynomials Arising from Coherent States

    Full text link
    In this paper, we study a family of orthogonal polynomials {ϕn(z)}\{\phi_n(z)\} arising from nonlinear coherent states in quantum optics. Based on the three-term recurrence relation only, we obtain a uniform asymptotic expansion of ϕn(z)\phi_n(z) as the polynomial degree nn tends to infinity. Our asymptotic results suggest that the weight function associated with the polynomials has an unusual singularity, which has never appeared for orthogonal polynomials in the Askey scheme. Our main technique is the Wang and Wong's difference equation method. In addition, the limiting zero distribution of the polynomials ϕn(z)\phi_n(z) is provided

    An EEG-Based Multi-Modal Emotion Database With Both Posed And Authentic Facial Actions For Emotion Analysis

    Get PDF
    Emotion is an experience associated with a particular pattern of physiological activity along with different physiological, behavioral and cognitive changes. One behavioral change is facial expression, which has been studied extensively over the past few decades. Facial behavior varies with a person\u27s emotion according to differences in terms of culture, personality, age, context, and environment. In recent years, physiological activities have been used to study emotional responses. A typical signal is the electroencephalogram (EEG), which measures brain activity. Most of existing EEG-based emotion analysis has overlooked the role of facial expression changes. There exits little research on the relationship between facial behavior and brain signals due to the lack of dataset measuring both EEG and facial action signals simultaneously. To address this problem, we propose to develop a new database by collecting facial expressions, action units, and EEGs simultaneously. We recorded the EEGs and face videos of both posed facial actions and spontaneous expressions from 29 participants with different ages, genders, ethnic backgrounds. Differing from existing approaches, we designed a protocol to capture the EEG signals by evoking participants\u27 individual action units explicitly. We also investigated the relation between the EEG signals and facial action units. As a baseline, the database has been evaluated through the experiments on both posed and spontaneous emotion recognition with images alone, EEG alone, and EEG fused with images, respectively. The database will be released to the research community to advance the state of the art for automatic emotion recognition

    ASL lexicon and reporting recommendations: A consensus report from the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI)

    Get PDF
    The 2015 consensus statement published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group and the European Cooperation in Science and Technology ( COST) Action ASL in Dementia aimed to encourage the implementation of robust arterial spin labeling (ASL) perfusion MRI for clinical applications and promote consistency across scanner types, sites, and studies. Subsequently, the recommended 3D pseudo-continuous ASL sequence has been implemented by most major MRI manufacturers. However, ASL remains a rapidly and widely developing field, leading inevitably to further divergence of the technique and its associated terminology, which could cause confusion and hamper research reproducibility. On behalf of the ISMRM Perfusion Study Group, and as part of the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI), the ASL Lexicon Task Force has been working on the development of an ASL Lexicon and Reporting Recommendations for perfusion imaging and analysis, aiming to (1) develop standardized, consensus nomenclature and terminology for the broad range of ASL imaging techniques and parameters, as well as for the physiological constants required for quantitative analysis; and (2) provide a community-endorsed recommendation of the imaging parameters that we encourage authors to include when describing ASL methods in scientific reports/papers. In this paper, the sequences and parameters in (pseudo-)continuous ASL, pulsed ASL, velocity-selective ASL, and multi-timepoint ASL for brain perfusion imaging are included. However, the content of the lexicon is not intended to be limited to these techniques, and this paper provides the foundation for a growing online inventory that will be extended by the community as further methods and improvements are developed and established

    Association between serum nickel and oral cancer incidence using propensity score matching and inverse probability of treatment weighting

    Get PDF
    BackgroundThe association between serum nickel (Ni) and oral cancer incidence is unclear and most of the previous studies were observational studies that did not control for confounding factors between groups.ObjectiveTo assess the correlation of serum Ni with oral cancer incidence based on propensity score matching (PSM) and inverse probability of treatment weighting (IPTW).MethodsA cohort of 456 newly diagnosed oral cancer patients was recruited from the First Hospital of Fujian Medical University during November 2011 to May 2019, and residents ordered their health check-up in hospitals or local community health centers over the same period were selected as a control group, which included a total of 1410 participants. Serum Ni was evaluated by inductively coupled plasma mass spectrometry. Case-control pairs were selected using a 1:1 PSM (caliper value of 0.02), and the study subjects in the case group and control group were weighted for subsequent analysis by IPTW. The general characteristics of the study subjects were tested for equilibrium before and after matching by chi-square test and standardized mean difference (SMD). This was followed by exploring the potential nonlinear dose-response relationship between serum Ni and oral cancer using restricted cubic splines as well as analyzing the association between serum Ni and oral cancer incidence by conditional logistic regression and weighted logistic regression.ResultsAfter controlling for between-group covariates by PSM and IPTW, the dose-response curves demonstrated that the risk of developing oral cancer tended to decline and then increase with the increasing serum Ni level. The outcome of the analysis using PSM demonstrated that as compared to the control group, the risk of developing oral cancer in the 0.09-16.80 μg·L−1 serum Ni group was negatively correlated with serum Ni level (OR=0.36, 95%CI: 0.24-0.54), whereas the risk of developing oral cancer in the >16.80 μg·L−1 serum Ni group was positively correlated with serum Ni level (OR=5.43, 95%CI: 2.76-10.68). After applying IPTW, a negative association was found between the risk of oral cancer and serum Ni concentration within a serum Ni window ranging from 0.09 to 20.55 μg·L−1 (OR=0.39, 95%CI: 0.29-0.52), while a positive association with an OR and 95%CI of 5.54 (3.62-8.49) for the Ni concentration > 20.55 μg·L−1.ConclusionIn this study, a J-shaped relationship between serum Ni concentration and the risk of developing oral cancer is found, which shows that high serum Ni concentration (>20.55 μg·L−1) may be a risk factor for oral cancer

    Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling:Acquisition, quantification, and clinical applications

    Get PDF
    Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.</p

    Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling: acquisition, quantification, and clinical applications

    Get PDF
    Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article

    Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling:Acquisition, quantification, and clinical applications

    Get PDF
    Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.</p

    Recommendations for quantitative cerebral perfusion MRI using multi‐timepoint arterial spin labeling: Acquisition, quantification, and clinical applications

    Get PDF
    Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article
    corecore