14 research outputs found
Management goals for type 1 Gaucher disease: An expert consensus document from the European working group on Gaucher disease
AbstractGaucher Disease type 1 (GD1) is a lysosomal disorder that affects many systems. Therapy improves the principal manifestations of the condition and, as a consequence, many patients show a modified phenotype which reflects manifestations of their disease that are refractory to treatment. More generally, it is increasingly recognised that information as to how a patient feels and functions [obtained by patient- reported outcome measurements (PROMs)] is critical to any comprehensive evaluation of treatment. A new set of management goals for GD1 in which both trends are reflected is needed. To this end, a modified Delphi procedure among 25 experts was performed. Based on a literature review and with input from patients, 65 potential goals were formulated as statements. Consensus was considered to be reached when ≥75% of the participants agreed to include that specific statement in the management goals. There was agreement on 42 statements. In addition to the traditional goals concerning haematological, visceral and bone manifestations, improvement in quality of life, fatigue and social participation, as well as early detection of long-term complications or associated diseases were included. When applying this set of goals in medical practice, the clinical status of the individual patient should be taken into account
Management goals for type 1 Gaucher disease: An expert consensus document from the European working group on Gaucher disease
International audienc
Lysine acetyltransferase 8 is involved in cerebral development and syndromic intellectual disability.
Contains fulltext :
218644.pdf (Publisher’s version ) (Closed access
Lysine acetyltransferase 8 is involved in cerebral development and syndromic intellectual disability
Epigenetic integrity is critical for many eukaryotic cellular processes. An important question is how different epigenetic regulators control development and influence disease. Lysine acetyltransferase 8 (KAT8) is critical for acetylation of histone H4 at lysine 16 (H4K16), an evolutionarily conserved epigenetic mark. It is unclear what roles KAT8 plays in cerebral development and human disease. Here, we report that cerebrum-specific knockout mice displayed cerebral hypoplasia in the neocortex and hippocampus, along with improper neural stem and progenitor cell (NSPC) development. Mutant cerebrocortical neuroepithelia exhibited faulty proliferation, aberrant neurogenesis, massive apoptosis, and scant H4K16 propionylation. Mutant NSPCs formed poor neurospheres, and pharmacological KAT8 inhibition abolished neurosphere formation. Moreover, we describe KAT8 variants in 9 patients with intellectual disability, seizures, autism, dysmorphisms, and other anomalies. The variants altered chromobarrel and catalytic domains of KAT8, thereby impairing nucleosomal H4K16 acetylation. Valproate was effective for treating epilepsy in at least 2 of the individuals. This study uncovers a critical role of KAT8 in cerebral and NSPC development, identifies 9 individuals with KAT8 variants, and links deficient H4K16 acylation directly to intellectual disability, epilepsy, and other developmental anomalies
Recommended from our members
Biallelic variants in ribonuclease inhibitor (RNH1), an inflammasome modulator, are associated with a distinctive subtype of acute, necrotizing encephalopathy
Mendelian etiologies for acute encephalopathies in previously healthy children are poorly understood, with the exception of RAN binding protein 2 (RANBP2)–associated acute necrotizing encephalopathy subtype 1 (ANE1). We provide clinical, genetic, and neuroradiological evidence that biallelic variants in ribonuclease inhibitor (RNH1) confer susceptibility to a distinctive ANE subtype.
This study aimed to evaluate clinical data, neuroradiological studies, genomic sequencing, and protein immunoblotting results in 8 children from 4 families who experienced acute febrile encephalopathy.
All 8 healthy children became acutely encephalopathic during a viral/febrile illness and received a variety of immune modulation treatments. Long-term outcomes varied from death to severe neurologic deficits to normal outcomes. The neuroradiological findings overlapped with ANE but had distinguishing features. All affected children had biallelic predicted damaging variants in RNH1: a subset that was studied had undetectable RNH1 protein. Incomplete penetrance of the RNH1 variants was evident in 1 family.
Biallelic variants in RNH1 confer susceptibility to a subtype of ANE (ANE2) in previously healthy children. Intensive immunological treatments may alter outcomes. Genomic sequencing in children with unexplained acute febrile encephalopathy can detect underlying genetic etiologies, such as RNH1, and improve outcomes in the probands and at-risk siblings