277 research outputs found

    Practical Implementation of a General Numerical Lifting-Line Method

    Get PDF
    A general numerical lifting-line method provides corrections to overcome the singularities inherent in the lifting-line downwash integrals in certain cases. These singularities have previously limited the scope of lifting-line theory to straight wings not in sideslip; in all other cases, more traditional numerical approaches to solving Prandtl\u27s hypothesis fail to grid converge. However, this general numerical lifting-line method grid converges even for swept wings and wings in sideslip. In the current work, we apply the general numerical lifting-line method to any number of wings with arbitrary geometry. We also provide a dimensional derivation of the basic general numerical lifting-line equations and discuss how airfoil section properties can be corrected for sweep. We develop a linearized system of equations and a nonlinear improvement method to solve the general numerical lifting-line equations. Results show that placing the lifting-line on the wing locus of aerodynamic centers, as done by others, may not yield the most accurate results. Comparisons with published data reveal that the general numerical lifting-line method can accurately predict the lift distribution for swept wings

    Immune checkpoint expression on immune cells of HNSCC patients and modulation by chemo- and immunotherapy

    Get PDF
    Endogenous control mechanisms, including immune checkpoints and immunosuppressive cells, are exploited in the process of tumorigenesis to weaken the anti-tumor immune response. Cancer treatment by chemotherapy or immune checkpoint inhibition can lead to changes of checkpoint expression, which influences therapy success. Peripheral blood lymphocytes (PBL) and tumor-infiltrating lymphocytes (TIL) were isolated from head and neck squamous cell carcinoma (HNSCC) patients (n = 23) and compared to healthy donors (n = 23). Immune checkpoint expression (programmed cell death ligand 1 (PD-1), tumor necrosis factor receptor (TNFR)-related (GITR), CD137, tumor necrosis factor receptor superfamily member 4 (TNFRSF4) (OX40), t-cell immunoglobulin and mucin-domain containing-3 (TIM3), B- and T-lymphocyte attenuator (BTLA), lymphocyte-activation gene 3 (LAG3)) was determined on immune cells by flow cytometry. PD-L1 expression was detected on tumor tissue by immunohistochemistry. Immune cells were treated with immuno- and chemotherapeutics to investigate treatment-specific change in immune checkpoint expression, in vitro. Specific changes of immune checkpoint expression were identified on PBL and TIL of HNSCC patients compared to healthy donors. Various chemotherapeutics acted differently on the expression of immune checkpoints. Changes of checkpoint expression were significantly less pronounced on regulatory T cells compared to other lymphocyte populations. Nivolumab treatment significantly reduced the receptor PD-1 on all analyzed T cell populations, in vitro. The specific immune checkpoint expression patterns in HNSCC patients and the investigated effects of immunomodulatory agents may improve the development and efficacy of targeted immunotherapy

    Characterization of human cytomegalovirus genome diversity in immunocompromised hosts by whole genomic sequencing directly from clinical specimens

    Get PDF
    Background: Advances in next-generation sequencing (NGS) technologies allow comprehensive studies of genetic diversity over the entire genome of human cytomegalovirus (HCMV), a significant pathogen for immunocompromised individuals. Methods: NGS was performed on target-enriched sequence libraries prepared directly from a variety of clinical specimens (blood, urine, breast-milk, respiratory samples, biopsies and vitreous humor) obtained longitudinally or from different anatomical compartments from 20 HCMV-infected patients (renal transplant recipients, stem cell transplant recipients and congenitally infected children). Results: De novo assembled HCMV genome sequences were obtained for 57/68 sequenced samples. Analysis of longitudinal or compartmental HCMV diversity revealed various patterns: no major differences were detected among longitudinal, intra-individual blood samples from 9/15 patients and in most of the patients with compartmental samples, whereas a switch of the major HCMV population was observed in six individuals with sequential blood samples and upon compartmental analysis of one patient with HCMV retinitis. Variant analysis revealed additional aspects of minor virus population dynamics and antiviral resistance mutations. Conclusions: In immunosuppressed patients, HCMV can remain relatively stable or undergo drastic genomic changes that are suggestive of the emergence of minor resident strains or de novo infection

    Seminal plasma as a source of prostate cancer peptide biomarker candidates for detection of indolent and advanced disease

    Get PDF
    Background:Extensive prostate specific antigen screening for prostate cancer generates a high number of unnecessary biopsies and over-treatment due to insufficient differentiation between indolent and aggressive tumours. We hypothesized that seminal plasma is a robust source of novel prostate cancer (PCa) biomarkers with the potential to improve primary diagnosis of and to distinguish advanced from indolent disease. <br>Methodology/Principal Findings: In an open-label case/control study 125 patients (70 PCa, 21 benign prostate hyperplasia, 25 chronic prostatitis, 9 healthy controls) were enrolled in 3 centres. Biomarker panels a) for PCa diagnosis (comparison of PCa patients versus benign controls) and b) for advanced disease (comparison of patients with post surgery Gleason score <7 versus Gleason score >>7) were sought. Independent cohorts were used for proteomic biomarker discovery and testing the performance of the identified biomarker profiles. Seminal plasma was profiled using capillary electrophoresis mass spectrometry. Pre-analytical stability and analytical precision of the proteome analysis were determined. Support vector machine learning was used for classification. Stepwise application of two biomarker signatures with 21 and 5 biomarkers provided 83% sensitivity and 67% specificity for PCa detection in a test set of samples. A panel of 11 biomarkers for advanced disease discriminated between patients with Gleason score 7 and organ-confined (<pT3a) or advanced (≥pT3a) disease with 80% sensitivity and 82% specificity in a preliminary validation setting. Seminal profiles showed excellent pre-analytical stability. Eight biomarkers were identified as fragments of N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase​,prostatic acid phosphatase, stabilin-2, GTPase IMAP family member 6, semenogelin-1 and -2. Restricted sample size was the major limitation of the study.</br> <br>Conclusions/Significance: Seminal plasma represents a robust source of potential peptide makers for primary PCa diagnosis. Our findings warrant further prospective validation to confirm the diagnostic potential of identified seminal biomarker candidates.</br&gt

    Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy

    Get PDF
    Background: Urine proteome analysis is rapidly emerging as a tool for diagnosis and prognosis in disease states. For diagnosis of diabetic nephropathy (DN), urinary proteome analysis was successfully applied in a pilot study. The validity of the previously established proteomic biomarkers with respect to the diagnostic and prognostic potential was assessed on a separate set of patients recruited at three different European centers. In this case-control study of 148 Caucasian patients with diabetes mellitus type 2 and duration >= 5 years, cases of DN were defined as albuminuria >300 mg/d and diabetic retinopathy (n = 66). Controls were matched for gender and diabetes duration (n = 82). Methodology/Principal Findings: Proteome analysis was performed blinded using high-resolution capillary electrophoresis coupled with mass spectrometry (CE-MS). Data were evaluated employing the previously developed model for DN. Upon unblinding, the model for DN showed 93.8% sensitivity and 91.4% specificity, with an AUC of 0.948 (95% CI 0.898-0.978). Of 65 previously identified peptides, 60 were significantly different between cases and controls of this study. In <10% of cases and controls classification by proteome analysis not entirely resulted in the expected clinical outcome. Analysis of patient's subsequent clinical course revealed later progression to DN in some of the false positive classified DN control patients. Conclusions: These data provide the first independent confirmation that profiling of the urinary proteome by CE-MS can adequately identify subjects with DN, supporting the generalizability of this approach. The data further establish urinary collagen fragments as biomarkers for diabetes-induced renal damage that may serve as earlier and more specific biomarkers than the currently used urinary albumin

    CDK-inhibitor independent cell cycle progression in an experimental haematopoietic stem cell leukaemia despite unaltered Rb-phosphorylation

    Get PDF
    A CD34-negative haematopoietic progenitor cell line, D064, derived from canine bone marrow stromal cells is able to differentiate into haematopoietic progenitors under the influence of growth factor-mediated signalling. While differentiating, these cells eventually start to express MHC class II molecules (DR homologues) on their surface. The stable transfection of the fibroblast-like wild-type cells with retroviral constructs containing the cDNA for the canine MHC class II DR-genes (DRA and DRB) induces a change in morphology, accelerates cell cycle progression and leads to a loss of anchorage-dependent growth. Transfected cells show features of an immature stem cell leukaemia, such as giant cell formation. In wild-type D064 cells the accumulation of the cyclin-dependent kinase inhibitor (cdki) p27kip-1 induces differentiation, which is dependent upon signalling via the ligand for the tyrosine kinase receptor c-kit (stem cell factor). DR-transfected cells instead apparently grow independently of any growth factor-mediated signals and express high levels of the cdkis p27kip-1 and especially p21waf-1/cip-1, concurrently with accelated cell cycle progression. In contrast to the overexpression of cdkis and despite accelerated cell cycle progression, the expression of the G2/M phase transition kinase p34cdc2 is significantly reduced in DR-transfected and transformed cells as compared to the haematopoietic wild-type cell line D064. This might suggest a possible alternative cell cycle progression pathway in this experimental stem cell leukaemia by by-passing the G0/G1 phase arrest, although retinoblastoma (Rb)-phosphorylation remains unaltered. These results provide evidence that mechanisms normally controlling the cell cycle and early haematopoietic differentiation are disrupted by the constitutive transcription and expression of MHC class II genes (DR) leading to a progression and growth of this experimental stem cell leukaemia independent from cell cycle controlling regulators such as p27 and p21. © 1999 Cancer Research Campaig
    • …
    corecore