13 research outputs found

    Moth assemblages in Costa Rica rain forest mirror small-scale topographic heterogeneity

    Get PDF
    In many tropical lowland rain forests, topographic variation increases environmental heterogeneity, thus contributing to the extraordinary biodiversity of tropical lowland forests. While a growing number of studies have addressed effects of topographic differences on tropical insect communities at regional scales (e.g., along extensive elevational gradients), surprisingly little is known about topographic effects at smaller spatial scales. The present study investigates moth assemblages in a topographically heterogeneous lowland rain forest landscape, at distances of less than a few hundred meters, in the Golfo Dulce region (SW Costa Rica). Three moth lineages—Erebidae–Arctiinae (tiger and lichen moths), the bombycoid complex, and Geometridae (inchworm moths)—were examined by means of automatic light traps in three different forest types: creek forest, slope forest, and ridge forest. Altogether, 6,543 individuals of 419 species were observed. Moth assemblages differed significantly between the three forest types regarding species richness, total abundance, and species composition. Moth richness and abundance increased more than fourfold and eightfold from creek over slope to ridge forest sites. All three taxonomic units showed identical biodiversity patterns, notwithstanding their strong differences in multiple eco‐morphological traits. An indicator species analysis revealed that most species identified as characteristic were associated either with the ridge forest alone or with ridge plus slope forests, but very few with the creek forest. Despite their mobility, local moth assemblages are highly differentially filtered from the same regional species pool. Hence, variation in environmental factors significantly affects assemblages of tropical moth species at small spatial scales

    Landscape-scale And Spatially Explicit Representation of vegetation dynamics and ecosystem carbon stocks in a hyperdiverse tropical forest ecosystem (LASER)

    Get PDF
    Tropical vegetation dynamics and ecosystem carbon (C) stocks typically vary with local topography and forest disturbance history. Yet, neither remote sensing nor vegetation modeling captures the underlying mechanistic processes determining ecosystem functioning and therefore the resulting estimates often do not match field observations of vegetation C stocks, especially so in hyperdiverse tropical forest ecosystems. This mismatch is further aggravated by the fact that multiple interacting factors, such as climatic drivers (i.e., temperature, precipitation, climate seasonality), edaphic factors (i.e., soil fertility, topographic diversity) and diversity-related parameters (i.e., species composition and associated plant functional traits) in concert determine ecosystem functioning and therefore affect tropical forest C sink-strength. Here, we propose a novel framework designed for integrating in-situ observations of local plant species diversity with remotely sensed estimates of plant functional traits, with the goal to deduce parameters for a recently developed trait- and size-structured demographic vegetation model. Plant-FATE (Plant Functional Acclimation and Trait Evolution) captures the acclimation of plastic traits within individual plants in response to the local environment and simulates shifts in species composition through demographic changes between coexisting species, in association with differences in their life-history strategies. Our framework may be used to project the functional response of tropical forest ecosystems under present and future climate change scenarios and thus should have crucial implications for assisted restoration and management of tropical plant species threatened by extinction

    Do fine root morphological and functional adaptations support regrowth success in a tropical forest restoration experiment?

    Get PDF
    In early stages of forest succession plants have a high nutrient demand, but it is still a matter of debate if regrowth success of pioneer species is related to plant functional traits favoring fast soil colonization and nutrient acquisition. In general, we would expect trade-offs between plant growth performance and fine root morphological properties in association with different plant life-history strategies. Hence, we hypothesized that fast growing plants should have a more efficient root system that allows them to outcompete slow-growing neighbors in a resource-limited environment. To test our hypothesis we monitored plant successional growth dynamics in a tropical lowland rainforest reforestation experiment conducted in southwest Costa Rica. We collected absorptive roots (<2mm diameter) from plant individuals (comprising 20 tree species and 11 plant families) with different growth dynamics (as indicated by measurements of stem diameter and height). For these samples we assessed a suite of fine root morphological traits, such as legume nodulation status, and furthermore quantified fine root nutrient concentration and phosphatase activities, as well as microbial biomass and phosphatase activity in soils in the close vicinity of fine roots. We found stark differences in fine root characteristics between the tree species investigated in this study, such that fast growing species exhibited relatively larger specific root length and higher turnover, whereas slow growing species tend to rely on mechanical resistance by increasing root tissue density and root life span. Our results suggest that the identified differences in the root trait spectrum between fast and slow growing species reflect plant functional adaptions to resource limitation, edaphic properties and soil microbial symbioses. Our findings further highlight the crucial need to foster our understanding of belowground root morphological and physiological traits during forest succession, especially so when aiming to restore forest ecosystem functioning in formerly intensified land-use systems

    Local-scale and spatially explicit response of tropical forests to climate change

    No full text
    Currently applied dynamic vegetation models do not realistically represent forest ecosystem processes and thus are not able to reproduce in-situ observations of forest ecosystem responses to drought. This is due to the fact that models typically rely on plant functional types to forecast the functional response of vegetation to climate change and to anthropogenic disturbance. However, recent observations of divergent ecosystem responses between topographic forest sites, differing in the availability of water and nutrients, indicate that we should no longer rely on this outdated concept but rather should explore new avenues of representing vegetation dynamics and associated climate change response in next-generation approaches. Global climate change scenarios forecast increasing severity of climate extremes in association with El Niño–Southern Oscillation (ENSO). Such climate anomalies have been shown to affect forest ecosystem processes such as net primary productivity, which is determined by climate (precipitation, temperature, and light) and soil fertility (geology and topography). However, more recently it has been suggested that the impact of such climate fluctuations on forest productivity was strongly related to local site characteristics, which determined the sensitivity of forest ecosystem processes to climate anomalies. We propose a novel approach integrating in-situ observations with remotely sensed estimates of forest aboveground productivity for parameterization of next-generation vegetation models capable of forecasting realistic forest ecosystem responses under future scenarios. Our approach considers local site characteristics associated with topography and disturbance history, both of which determine the sensitivity of forest aboveground productivity to projected climate anomalies. Our results therefore should have crucial implications for management and restoration of forest ecosystems and could be used to refine estimates of forest C sink-strength under future scenarios

    Forward start options under Heston affine jump-diffusions and stochastic interest rate

    No full text
    This paper presents a generalization of forward start options under jump diffusion framework of Duffie et al. [Duffie, D, J Pan and K Singleton (2000). Transform analysis and asset pricing for affine jump-diffusions, Econometrica 68, 1343–1376.]. We assume, in addition, the short-term rate is governed by the CIR dynamics introduced in Cox et al. [Cox, JC, JE Ingersoll and SA Ross (1985). A theory of term structure of interest rates, Econometrica 53, 385–408.]. The instantaneous volatilities are correlated with the dynamics of the stock price process, whereas the short-term rate is assumed to be independent of the dynamics of the price process and its volatility. The main result furnishes a semi-analytical formula for the price of the Forward Start European call option. It is derived using probabilistic approach combined with the Fourier inversion technique, as developed in Ahlip and Rutkowski [Ahlip, R and M Rutkowski (2014). Forward start foreign exchange options under Heston’s volatility and CIR interest rates, Inspired By Finance Springer, pp. 1–27], Carr and Madan [Carr, P and D Madan (1999). Option valuation using the fast Fourier transform, Journal of Computational Finance 2, 61–73, Carr, P and D Madan (2009). Saddle point methods for option pricing, Journal of Computational Finance 13, 49–61] as well as Levendorskiĩ [Levendorskiĩ, S (2012). Efficient pricing and reliable calibration in the Heston model, International Journal of Applied Finance 15, 1250050]
    corecore