10,235 research outputs found

    Recursive n-gram hashing is pairwise independent, at best

    Get PDF
    Many applications use sequences of n consecutive symbols (n-grams). Hashing these n-grams can be a performance bottleneck. For more speed, recursive hash families compute hash values by updating previous values. We prove that recursive hash families cannot be more than pairwise independent. While hashing by irreducible polynomials is pairwise independent, our implementations either run in time O(n) or use an exponential amount of memory. As a more scalable alternative, we make hashing by cyclic polynomials pairwise independent by ignoring n-1 bits. Experimentally, we show that hashing by cyclic polynomials is is twice as fast as hashing by irreducible polynomials. We also show that randomized Karp-Rabin hash families are not pairwise independent.Comment: See software at https://github.com/lemire/rollinghashcp

    Detecting entanglement of two electron spin qubits with witness operators

    Full text link
    We propose a scheme for detecting entanglement between two electron spin qubits in a double quantum dot using an entanglement witness operator. We first calculate the optimal configuration of the two electron spins, defined as the position in the energy level spectrum where, averaged over the nuclear spin distribution, 1) the probability to have two separated electrons, and 2) the degree of entanglement of the quantum state quantified by the concurrence are both large. Using a density matrix approach, we then calculate the evolution of the expectation value of the witness operator for the two-spin singlet state, taking into account the effect of decoherence due to quantum charge fluctuations modeled as a boson bath. We find that, for large interdot coupling, it is possible to obtain a highly entangled and robust ground state.Comment: 4 pages, 3 figure

    Quantum Dissipation due to the Interaction with Chaos

    Full text link
    We discuss the possibility of having "quantum dissipation" due to the interaction with chaotic degrees of freedom. We define the conditions that should be satisfied in order to have a dissipative effect similar to the one due to an interaction with a (many body) bath. We also compare with the case where the environment is modeled by a random matrix model. In case of interaction with "chaos" we observe a regime where the relaxation process is non-universal, and reflects the underlaying semiclassical dynamics. As an example we consider a two level system (spin) that interacts with a two dimensional anharmonic oscillator.Comment: 5 pages, 1 figure, final improved version, to be published as Phys Rev. E Rapid Communicatio

    Effect of random interactions in spin baths on decoherence

    Full text link
    We study the decoherence of a central spin 1/2 induced by a spin bath with intrabath interactions. Since we are interested in the cumulative effect of interaction and disorder, we study baths comprising Ising spins with random ferro- and antiferromagnetic interactions between the spins. Using the resolvent operator method which goes beyond the standard Born-Markov master equation approach, we show that, in the weak coupling regime, the decoherence of the central spin at all times is entirely determined by the local-field distribution or equivalently, the dynamical structure factor of the Ising bath. We present analytic results for the Ising spin chain bath at arbitrary temperature for different distributions of the intrabath interaction strengths. We find clear evidence of non-Markovian behavior in the low temperature regime. We also consider baths described by Ising models on higher-dimensional lattices. We find that interactions lead to a significant reduction of the decoherence. An important feature of interacting spinbaths is the saturation of the asymptotic Markovian decay rate at high temperatures, as opposed to the conventional Ohmic boson bath.Comment: 13 page

    Entanglement spectroscopy of a driven solid-state qubit and its detector

    Full text link
    We study the asymptotic dynamics of a driven quantum two level system coupled via a quantum detector to the environment. We find multi-photon resonances which are due to the entanglement of the qubit and the detector. Different regimes are studied by employing a perturbative Floquet-Born-Markov approach for the qubit+detector system, as well as non-perturbative real-time path integral schemes for the driven spin-boson system. We find analytical results for the resonances, including the red and the blue sidebands. They agree well with those of exact ab-initio calculations.Comment: 4 pages, 4 figure
    • …
    corecore