8 research outputs found

    TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma

    Get PDF
    Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association wit

    Medulloblastoma has a global impact on health related quality of life: Findings from an international cohort

    Get PDF
    Background: Understanding the global impact of medulloblastoma on health related quality of life (HRQL) is critical to characterizing the broad impact of this disease and realizing the benefits of modern treatments. We evaluated HRQL in an international cohort of pediatric medulloblastoma patients. Methods: Seventy-six patients were selected from 10 sites across North America, Europe, and Asia, who participated in the Medulloblastoma Advanced Genomics International Consortium (MAGIC). The Health Utilities Index (HUI) was administered to patients and/or parents at each site. Responses were used to determine overall HRQL and attributes (ie specific subdomains). The impact of various demographic and medical variables on HRQL was considered—including molecular subgroup. Results: The majority of patients reported having moderate or severe overall burden of morbidity for both the HUI2 and HUI3 (HUI2 = 60%; HUI3 = 72.1%) when proxy-assessed. Self-care in the HUI2 was rated as higher (ie better outcome) for patients from Western versus Eastern sites, P =.02. Patients with nonmetastatic status had higher values (ie better outcomes) for the HUI3 hearing, HUI3 pain, and HUI2 pain, all P <.05. Patients treated with a gross total resection also had better outcomes for the HUI3 hearin

    Who discovered the magnetocaloric effect?:Warburg, Weiss, and the connection between magnetism and heat

    No full text
    A magnetic body changes its thermal state when subjected to a changing magnetic field. In particular, if done under adiabatic conditions, its temperature changes. For the past 15 years the magnetocaloric effect has been the focus of significant research due to its possible application for efficient refrigeration near room temperature. At the same time, it has become common knowledge within the magnetic refrigeration research community that the magnetocaloric effect was discovered by the German physicist E. Warburg in 1881. We re-examine the original literature and show that this is a misleading reading of what Warburg did, and we argue that the discovery of the effect should instead be attributed to P. Weiss and A. Piccard in 1917

    Bibliography

    No full text

    The RNA Binding Protein HuR: a Promising Drug Target for Anticancer Therapy

    No full text

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore