202 research outputs found

    Density of States of GaAs-AlGaAs Heterostructures Deduced from Temperature Dependend Magnetocapacitance Measurements

    Get PDF
    Abstract We have analyzed the density of states of a two dimensional electron gas in a GaAs- AlGaAs hetereostructure by measuring the magnetocapacitance in magnetic fields up to 6 Tesla at temperatures below 10 K. The experimental data are well described by a Gaussian-like density of states where the linewidth à is proportional to B

    Density of States in Landau Level Tails of GaAs-AlxGa1-xAs Heterostructures

    Get PDF
    From an analysis of the thermally activated resistivity as a function of the magnetic field in the quantum Hall regime we deduced the position of the Fermi energy in the mobility gap as a function of the filling factor and therefore the density of states. The measured density of states is best described by a Gaussian like profile superimposed on a constant background

    Characteristics of the Motor Responsible for the Gliding of Native Microtubules from Squid Axoplasm

    Get PDF
    Nucleotide-dependent movement of native microtubules (nMTs) in squid axoplasm has biochemical and biophysical characteristics of kinesin-driven motility. However, the high vanadate and N-ethylmaleimide sensitivity and the velocity demonstrate that the properties of the native motile system differ considerably from those of purified kinesin preparations

    Imaging ellipsometry of graphene

    Get PDF
    Imaging ellipsometry studies of graphene on SiO2/Si and crystalline GaAs are presented. We demonstrate that imaging ellipsometry is a powerful tool to detect and characterize graphene on any flat substrate. Variable angle spectroscopic ellipsometry is used to explore the dispersion of the optical constants of graphene in the visible range with high lateral resolution. In this way the influence of the substrate on graphene's optical properties can be investigatedComment: 3 pages, 3 figure

    Activation of myosin V–based motility and F-actin–dependent network formation of endoplasmic reticulum during mitosis

    Get PDF
    It is widely believed that microtubule- and F-actin–based transport of cytoplasmic organelles and membrane fusion is down-regulated during mitosis. Here we show that during the transition of Xenopus egg extracts from interphase to metaphase myosin V–driven movement of small globular vesicles along F-actin is strongly inhibited. In contrast, the movement of ER and ER network formation on F-actin is up-regulated in metaphase extracts. Our data demonstrate that myosin V–driven motility of distinct organelles is differently controlled during the cell cycle and suggest an active role of F-actin in partitioning, positioning, and membrane fusion of the ER during cell division

    Movement of Axoplasmic Organelles on Actin Filaments from Skeletal Muscle

    Get PDF
    It was recently shown that, in addition to the well-established microtubule-dependent mechanism, fast transport of organelles in squid giant axons also occurs in the presence of actin filaments [Kuznetsov et al., 1992, Nature 356:722-725]. The objectives of this study were to obtain direct evidence of axoplasmic organelle movement on actin filaments and to demonstrate that these organelles are able to move on skeletal muscle actin filaments. Organelles and actin filaments were visualized by video-enhanced contrast differential interference contrast (AVEC-DIC) microscopy and by video intensified fluorescence microscopy. Actin filaments, prepared by polymerization of monomeric actin purified from rabbit skeletal muscle, were stabilized with rhodamine-phalloidin and adsorbed to cover slips. When axoplasm was extruded on these cover slips in the buffer containing cytochalasin B that prevents the formation of endogenous axonal actin filaments, organelles were observed to move at the fast transport rate. Also, axoplasmic organelles were observed to move on bundles of actin filaments that were of sufficient thickness to be detected directly by AVEC-DIC microscopy. The range of average velocities of movement on the muscle actin filaments was not statistically different from that on axonal filaments. The level of motile activity (number of organelles moving/min/field) on the exogenous filaments was less than on endogenous filaments probably due to the entanglement of filaments on the cover slip surface. We also found that calmodulin (CaM) increased the level of motile activity of organelles on actin filaments. In addition, CaM stimulated the movement of elongated membranous organelles that appeared to be tubular elements of smooth endoplasmic reticulum or extensions of prelysosomes. These studies provide the first direct evidence that organelles from higher animal cells such as neurons move on biochemically defined actin filaments

    The Quantum Hall Effect in a One-Dimensional Lateral Superlattice: Nearly Dissipationless Transport Across High Potential Barriers

    Get PDF
    We have investigated strongly modulated one- dimensional lateral superlattices in the quantum Hall regime. Although the modulation amplitude is comparable to the Fermi energy in the system, giving rise to zero magnetic field square resistances of up to 75 k¦¸, we observe nearly dissipationless transport across the barriers at integer filling factors. While the Hall resistance displays quantized plateaus, there are no gaps in the Landau level density of states. The experimental findings can be explained in terms of B¨¹ttiker¡¯s edge channel model involving the high aspect ratio of the barriers

    The reduced genome of the parasitic microsporidian Enterocytozoon bieneusi lacks genes for core carbon metabolism

    Get PDF
    © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution-Noncommercial 2.5 License. The definitive version was published in Genome Biology and Evolution 2 (2010): 304, doi:10.1093/gbe/evq022.Reduction of various biological processes is a hallmark of the parasitic lifestyle. Generally, the more intimate the association between parasites and hosts the stronger the parasite relies on its host's physiology for survival and reproduction. However, some systems have been held to be indispensable, for example, the core pathways of carbon metabolism that produce energy from sugars. Even the most hardened anaerobes that lack oxidative phosphorylation and the tricarboxylic acid cycle have retained glycolysis and some downstream means to generate ATP. Here we describe the deep-coverage genome resequencing of the pathogenic microsporidiian, Enterocytozoon bieneusi, which shows that this parasite has crossed this line and abandoned complete pathways for the most basic carbon metabolism. Comparing two genome sequence surveys of E. bieneusi to genomic data from four other microsporidia reveals a normal complement of 353 genes representing 30 functional pathways in E. bieneusi, except that only 2 out of 21 genes collectively involved in glycolysis, pentose phosphate, and trehalose metabolism are present. Similarly, no genes encoding proteins involved in the processing of spliceosomal introns were found. Altogether, E. bieneusi appears to have no fully functional pathway to generate ATP from glucose. Therefore, this intracellular parasite relies on transporters to import ATP from its host.This work was supported by grants from the Canadian Institutes for Health Research (MOP-84265), the National Institutes of Health (NIH AI31788, R21 AI52792, and R21 AI064118), and the National Science Foundation (MCB- 0135272). N.C. is a Scholar of the Canadian Institute for Advanced Research and is supported by a fellowship from the Swiss National Science Foundation (NSF) (PA00P3- 124166). D.E. is supported by the Swiss NSF. P.J.K. is a Fellow of the Canadian Institute for Advanced Research and a Senior Scholar of the Michael Smith Foundation for Health Research

    Effect of 3D-scaffold formation on differentiation and survival in human neural progenitor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>3D-scaffolds have been shown to direct cell growth and differentiation in many different cell types, with the formation and functionalisation of the 3D-microenvironment being important in determining the fate of the embedded cells. Here we used a hydrogel-based scaffold to investigate the influences of matrix concentration and functionalisation with laminin on the formation of the scaffolds, and the effect of these scaffolds on human neural progenitor cells cultured within them.</p> <p>Methods</p> <p>In this study we used different concentrations of the hydrogel-based matrix PuraMatrix. In some experiments we functionalised the matrix with laminin I. The impact of concentration and treatment with laminin on the formation of the scaffold was examined with atomic force microscopy. Cells from a human fetal neural progenitor cell line were cultured in the different matrices, as well as in a 2D culture system, and were subsequently analysed with antibody stainings against neuronal markers. In parallel, the survival rate of the cells was determined by a live/dead assay.</p> <p>Results</p> <p>Atomic force microscopy measurements demonstrated that the matrices are formed by networks of isolated PuraMatrix fibres and aggregates of fibres. An increase of the hydrogel concentration led to a decrease in the mesh size of the scaffolds and functionalisation with laminin promoted aggregation of the fibres (bundle formation), which further reduces the density of isolated fibres. We showed that laminin-functionalisation is essential for human neural progenitor cells to build up 3D-growth patterns, and that proliferation of the cells is also affected by the concentration of matrix. In addition we found that 3D-cultures enhanced neuronal differentiation and the survival rate of the cells compared to 2D-cultures.</p> <p>Conclusions</p> <p>Taken together, we have demonstrated a direct influence of the 3D-scaffold formation on the survival and neuronal differentiation of human neural progenitor cells. These findings emphasize the importance of optimizing 3D-scaffolds protocols prior to <it>in vivo </it>engraftment of stem and progenitor cells in the context of regenerative medicine.</p
    corecore