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Abstract

Reduction of various biological processes is a hallmark of the parasitic lifestyle. Generally, the more intimate the association
between parasites and hosts the stronger the parasite relies on its host’s physiology for survival and reproduction. However,

some systems have been held to be indispensable, for example, the core pathways of carbon metabolism that produce

energy from sugars. Even the most hardened anaerobes that lack oxidative phosphorylation and the tricarboxylic acid cycle

have retained glycolysis and some downstream means to generate ATP. Here we describe the deep-coverage genome

resequencing of the pathogenic microsporidiian, Enterocytozoon bieneusi, which shows that this parasite has crossed this

line and abandoned complete pathways for the most basic carbon metabolism. Comparing two genome sequence surveys of

E. bieneusi to genomic data from four other microsporidia reveals a normal complement of 353 genes representing

30 functional pathways in E. bieneusi, except that only 2 out of 21 genes collectively involved in glycolysis, pentose
phosphate, and trehalose metabolism are present. Similarly, no genes encoding proteins involved in the processing of

spliceosomal introns were found. Altogether, E. bieneusi appears to have no fully functional pathway to generate ATP from

glucose. Therefore, this intracellular parasite relies on transporters to import ATP from its host.
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Introduction

Microsporidia are notoriously reduced and derived intra-

cellular parasites, some with genomes smaller than those

of many bacteria and a reduced set of about 2,000 genes

(Katinka et al. 2001; Cornman et al. 2009; Corradi et al.

2009). Even so, the complete genome of the model path-

ogenic microsporidian Encephalitozoon cuniculi has a fully

functional set of genes for several core carbon metabolic

pathways, as well as some lipid metabolism (Katinka et al.

2001). Three other microsporidian genomes that have

been surveyed at depth, Nosema ceranae, Antonospora

locustae, and Octosporea bayeri (this species is in the pro-

cess of being renamed, but the genome survey was under

the name O. bayeri), contain more or less the same
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complement of genes for core functions (Cornman et al.
2009; Corradi et al. 2009). However, all three of these ge-

nomes also contain several genes that are not present in E.
cuniculi, raising questions about whether this pool of

genes adequately represents the potential metabolic diver-

sity of microsporidia.

This is particularly striking in the case of energy metabolism.

Glycolysis, thepentosephosphatepathway,and trehaloseme-

tabolism have been taken to represent the backboneofmicro-
sporidian energy metabolism because their mitochondria are

massively reduced and all species investigated to date lack

the tricarboxylic acid cycle and oxidative metabolism (Williams

and Keeling 2003; van der Giezenet al. 2005), with the excep-

tion of the alternative oxidase (AOX) in some species (Williams

etal.2010).However,a recent3�coveragegenomesequence

surveyof a human isolateofEnterocytozoonbieneusi revealed

that genes relating to energy metabolism were underrepre-
sented in general (Akiyoshi et al. 2009). Whether this survey

accurately represents the content of the E. bieneusi genome

is a challenging question because of its very low coverage

(Milinkovitchetal.2010).Lowcoverageisparticularlyproblem-

atic when it concerns the potential absence of genes because

any given gene may be missing due to sampling error and only

the functional relationship of these genes allowed the sugges-

tionthattheymayactuallybeabsent. Inaddition, theparasite is
not presently cultivable and may only be isolated directly from

infected host animals and is therefore not amenable to bio-

chemical analysis to prove the absence of enzymatic activity.

To test this question, we have used clone-independent,

10� coverage 454 genome sequencing to compare an in-

dependent survey of the E. bieneusi genome with the pre-

vious survey, as well as with the genomes of four distantly

related microsporidians. If the absence of genes in the pre-
vious 3� coverage was due to sampling error resulting from

low coverage, we would expect a resampling (at even higher

coverage) to produce a different but overlapping set of

genes. If, on the other hand, the genes identified in the

3� coverage did adequately represent the content of the

genome, then we would expect to find very few additional

genes in a second survey, and in particular, no additional

genes for energy metabolism would be expected to be
found (supporting their absence from the genome). Here

we report an almost perfect correlation between the gene

content of the original genome survey and that of the pres-

ent, 10� coverage 454 survey. Specifically, most functional

pathways present in other microsporidia are well repre-

sented in both E. bieneusi surveys, with the exception of

all pathways relating to energy generation. From these path-

ways, only the same two genes were found in both surveys,
a result not consistent with sampling error. Interestingly, we

found that no genes were present relating to the removal of

spliceosomal introns and that genes for fatty acid metabo-

lism are also reduced, suggesting that these functions are

also reduced or lost. Overall, these results show that E. bi-

eneusi has lost not only introns and the spliceosome (which
have otherwise only been recorded to be lost in a single

nucleus-derived organelle: Lane et al. 2007) but also more

interestingly lost the ability to generate energy from sugars,

a level of host dependence that has never been observed in

any other parasite.

Materials and Methods

The genome of E. bieneusi human isolate H348, karyotype
H1, was sequenced using Roche GS-FLX (454) with library

construction and sequencing performed essentially as de-

scribed (Margulies et al. 2005). Briefly, 2 lg of high molec-

ular weight DNA (Akiyoshi et al. 2009) was sheared by

nebulization and size selected to generate 300–800 bp frag-

ments. DNA fragment ends were repaired and phosphory-

lated using T4 DNA polymerase and T4 polynucleotide

kinase. Adaptor oligonucleotides ‘‘A’’ and ‘‘B’’ supplied with
the 454 Life Sciences shotgun sequencing reagent kit were

ligated to the DNA fragments using T4 DNA ligase. Purified

DNA fragments were hybridized to DNA capture beads and

clonally amplified by emulsion polymerase chain reaction.

DNA capture beads containing amplified DNA were depos-

ited onto the GS-FLX PicoTiterPlate for sequencing. The

equivalent of a full FLX run was done but as two half plates

on two separate dates. The sequencing produced 300,865
reads, totaling 71.3 Mb of sequence data. The sequence

data were assembled using Roche’s Newbler assembler, ver-

sion 1.1.03.24, and open reading frames were identified us-

ing GLIMMER3 (Delcher et al. 1999) and the ‘getorf’ module

of the EMBOSS package (Rice, Longden, and Bleasby 2000).

New sequences were both assembled alone and with the

original Sanger survey data. The assemblies were similar

suggesting that the 10� coverage was not significantly dif-
ferent than the original survey. Additional homologues to

yeast and E. cuniculi genes were identified using Blast

(TBlastN, TBlastX, and BlastX; Altschul et al. 1997) to search

the assembly. Gene identification was generally based on

Blast searches with a cutoff of 10�10. Those genes involved

in energy metabolism in other microsporidia that were not

identified were specifically sought using TBlastN with a lower

cutoff. Even at 10�3 and with a close inspection of the
resulting alignments, no additional candidates for energy

metabolism were identified. The complement of genes iden-

tified in the original sequence survey and the 454 sequence

survey were compared by reciprocal Blast. All new sequen-

ces have been deposited in GenBank under accession

SRX019563 and in MicrosporidiaDB (www.microsporidiadb

.org) at EuPathdB.

Results

The genome of E. bieneusi was resampled to an estimated

10� coverage using 454 pyrosequencing and compared
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with the original survey (Akiyoshi et al. 2009). The pool of

genes identified in the two surveys were found to correlate

remarkably well (table 1, supplementary table S1, Supple-

mentary Material online). Indeed, out of 353 genes repre-

senting 30 functional pathways common to the other

microsporidia, only two genes were identified in the present

survey that were not identified previously (table 1, supple-

mentary table S1, Supplementary Material online). Finding

the same pool of identifiable genes in two surveys suggests

that both surveys have sampled the array of E. bieneusi
genes to near completion. At face value, this is not easily

reconcilable with the estimated genome size of 6 Mb for

E. bieneusi, which suggested that only 60% of the genome

had been covered in the previous survey (Akiyoshi et al.

Table 1

Numbers of Genes Corresponding to Core Carbon Metabolic Pathways and Other Representative Pathways in Five Diverse Microsporidian Genomes

Biochemical Pathways

Encephalitozoon

cuniculi

Antonospora

locustae

Octosporea

bayeri

Nosema

ceranae

Enterocytozoon

bieneusi

Genomic data available Sanger (complete) Sanger Solexa 454 Sanger 454

Estimated genome size (Mb) 2.9 5.6 �24.2 �10 6

(A) Pathways with strong

differences among species

Glycolysis 12 12 12 12 1 1

Pentose phosphate pathway 5 5 5 5 1 1

Trehalose metabolism 4 4 4 4 0 0

Fatty acids biosynthesis 20 19 20 19 5 6

Number of ORFs 41 40 41 40 7 8

(B) Pathways present in all species

Transcriptional control 44 41 44 34 39 39

60S ribosomal proteins 46 39 39 39 45 43

40S ribosomal proteins 31 31 29 25 26 27

tRNA synthetases 21 21 21 21 21 21

rRNA processing 20 20 18 19 18 18

Recombination and DNA repair 22 20 21 20 19 19

Meiosis 18 18 15 18 14 13

Protein kinases 19 18 14 17 18 19

Transcription initiation factors 18 18 18 15 17 17

Cell growth and cell polarity 11 8 9 10 10 9

Deoxyribonucleotide metabolism 11 6 7 4 11 10

C-compound and carbohydrate

metabolism

9 9 9 8 7 7

DNA-directed DNA polymerases 8 8 8 8 8 8

DNA replication factors A and C 8 7 6 5 8 8

DNA replication licensing factors,

MCM family

8 8 8 8 8 8

tRNA modification 7 7 7 6 7 7

tRNA synthesis 7 7 7 6 6 6

DNA-dependent helicases, ligases,

telomerases

7 7 7 7 7 7

Chromosome segregation proteins,

SMC family

5 5 5 5 5 5

Phosphate metabolism 5 3 5 5 5 5

Amino acid metabolism 4 4 3 4 3 3

Transcription elongation factors 3 3 2 3 3 3

DNA topoisomerases 3 3 3 2 3 3

Nitrogen and sulfur metabolism 3 3 3 2 2 2

Polynucleotide degradation 2 2 2 2 2 2

tRNA processing 2 2 2 1 2 2

Origin recognition complex 2 2 2 1 2 2

Glycerol phosphate shuttle 2 2 2 2 1 1

Sugar transporters 3 2 2 3 3 3

ADP/ATP transporters 4 3 1 4 4 4

Number of ORFs 353 327 319 304 324 321

Total ORFs 394 367 360 344 331 329

MCM, minichromosome maintenance; ORF, open reading frame; rRNA, ribosomal RNA; SMC, structural maintenance of chromosomes; tRNA, transfer RNA.
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2009). However, partial genome duplications have been

shown in other microsporidia (Nassonova et al. 2005),

and the presence of such duplications in E. bieneusi would

lead to the observed inconsistency.

Moreover, with very few exceptions (see below), the

genes identified in E. bieneusi surveys are the same genes

found in other phylogenetically diverse microsporidian ge-

nomes (table 1, supplementary table S1, Supplementary
Material online). For example, the E. cuniculi genome enc-

odes 46 identifiable large subunit ribosomal proteins, and

we identified 45 of these, and no additional large subunit

ribosomal proteins, in E. bieneusi (table 1, supplementary

table S1, Supplementary Material online). The same holds

true for most of the 353 genes and 30 functional pathways

analyzed, of which more than 91% were also identified in E.
bieneusi (table 1, supplementary table S1, Supplementary
Material online). Altogether, this pattern suggests that

the majority of E. bieneusi genes have been sampled and

identified.

Although most functional pathways were similarly repre-

sented in E. bieneusi and other microsporidia, several excep-

tions stand out. The most important of these are genes

relating to several core carbon metabolic pathways. All

other microsporidian genomes contain complete pathways

for glycolysis, including two subunits of the downstream

pyruvate dehydrogenase enzyme (12 genes in total) and

trehalose metabolism (four genes). The pentose phosphate

pathway is also complete (five genes), with the exception of

lactonase. The E. bieneusi genome, on the other hand,

encodes genes for only one glycolytic enzyme (glycerol-

3-phosphate dehydrogenase), one enzyme in the pentose
phosphate pathway (glucose-6-phosphate dehydrogenase),

and no enzymes whatsoever for trehalose metabolism

(fig. 1, table 1, supplementary table S1, Supplementary Ma-

terial online). Importantly, these two enzymes and only

these two were found in both E. bieneusi surveys. Similarly,

only 6 of the 20 genes involved in lipid metabolism in other

microsporidia were found in E. bieneusi, and only 1 of

2 genes for the glycerol-3-phosphate shuttle system was
found (table 1, supplementary table S1, Supplementary Ma-

terial online). The overall pattern, therefore, demonstrates

a clearly non-random pattern of gene content as the major-

ity of functional categories represented in the E. bieneusi
genome matches closely that found in other microsporidia,

but genes related to energy generation and carbon metab-

olism are severely reduced in the E. bieneusi genome (fig. 1,

FIG. 1.—Core carbon metabolic pathways believed to form the backbone of energy metabolism in microsporidia. Enzymes are in red and

metabolites in black. All the enzymes shown are present in the genomes of Encephalitozoon cuniculi, Antonospora locustae, Nosema ceranae, and

Octosporea bayeri, with the single exception of lactonase (in gray) which has not been identified. In contrast, only two enzymes in any of these

pathways are present in Enterocytozoon bieneusi (shown in red on black).
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table 1). This leads us to conclude that these genes and their
corresponding activities have been lost.

The only functional class of proteins outside of core

carbon metabolism found to be similarly affected is the spli-

ceosome: no genes relating to the removal of spliceosomal

introns were identified, which is consistent with the original

genome survey where no evidence of introns was found

(Akiyoshi et al. 2009).

Discussion

The implications of our observations are striking: although

there seems to be some residual capacity to modify small

carbohydrates and lipids in E. bieneusi, complete pathways

to produce energy from sugar are entirely absent (fig. 1). No

other pathways are found in the genome that could perform

this function, so this intracellular parasitic eukaryote lacks
any apparent mechanism to make ATP from glucose. This

in turn suggests that E. bieneusi must be directly dependent

on its host for both sugars (which it cannot make) and ATP.

Intriguingly, the E. cuniculi genome encodes several ATP

transporters possibly derived by horizontal gene transfer

(Richards et al. 2003; Tsaousis et al. 2008). A subset of these

have been shown to recruit ATP from the host cytosol in

E. cuniculi, whereas others recruit ATP from the cytosol
to the relict mitochondrion (Tsaousis et al. 2008; Williams

et al. 2008), and the same family of transporters is seen

in E. bieneusi and other microsporidian genomes that have

been analyzed (supplementary table S1, Supplementary

Material online).

The existence of such transporters may have laid the

foundations for the eventual loss of sugar metabolism alto-

gether in E. bieneusi, but it is also possible that this trait is
more widespread in microsporidia than we now imagine.

This is because glycolysis generates not only ATP but also

nicotinamide adenine dinucleotide hydrogenase (NADH).

Without some mechanism to eliminate the accumulating

reducing potential, this system is unsustainable. Trypano-

somes solve this problem by shunting reducing potential

to the mitochondrion using the glycerol-3-phosphate shut-

tle where it is metabolized by the mitochondrial AOX.
Recently, a mitochondrial AOX has been identified in several

microsporidia (Corradi et al. 2009; Williams et al. 2010). The

AOX gene is not found in either genome survey of E. bien-
eusi, as expected, but it is also absent from the complete

genome of E. cuniculi. Moreover, E. cuniculi has also been

shown to have a disrupted glycerol-3-phosphate shuttle

because it is lacking enzymes normally used to process

the mitochondrial partner in the shuttle (Buri et al. 2006),
and localization of this protein suggests that it is now cyto-

solic (Williams et al. 2008). It is difficult to see how glycolysis

could be sustained to generate energy in E. cuniculi without

either the glycerol-3-phosphate shuttle or a terminal oxidase

such as AOX, leading to the intriguing possibility that

E. cuniculi also does not use its glycolysis pathway for energy
generation (Williams et al. 2010). An interesting alternative

speculation is that glycolysis is primarily retained for the

production of NADH in E. cuniculi (with ATP being a useful

by-product).

Regardless of what the core function of glycolysis is in

other microsporidia, it is clear from genomic data that

E. bieneusi has not only lost this function but also been met-

abolically reduced beyond that observed for any other eu-
karyote to date, relying on host processes for even the most

basic of metabolic activities. This extreme reliance on its host

and corresponding lack of intrinsic biochemical pathways

might also go some way to explain why this parasite is so

refractory to cultivation.

Supplementary Material

Supplementary table S1 is available at Genome Biology and
Evolution Online (http://www.gbe.oxfordjournals.org/).
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