160 research outputs found

    Non-linear signal detection for molecular communications

    Get PDF
    Molecular communications convey information via diffusion propagation. The inherent long-tail channel response causes severe inter-symbol interference, which may seriously degrade signal detection performances. Traditional linear signal detection techniques, unfortunately, require both high complexity and a high signal-to-noise (SNR) ratio to operate. In this paper, we proposed a new non-linear signal processing paradigm inspired by the biological systems that achieves low-complexity signal detection even in low SNR regimes. First, we introduce a stochastic resonance inspired non-linear filtering scheme for molecular communications, and show that it significantly improves the output SNR by transforming the noise energy into useful signals. Second, we design a novel non-coherent detector by exploiting the transient features of molecular signaling, which are independent of channel response and involves only lowcomplexity linear summation operations. Numerical simulations show that this new scheme can improve the detection performance remarkably (approx. 7dB gain), even when compared against linearly optimal coherent methods. This is one of the first attempts to demodulate molecular signals from an entirely biological point of view, and the designed non-linear noncoherent paradigm will provide significant potential to the design and future implementation of nano-systems in noisy biological environments

    Lightweight Salient Object Detection in Optical Remote-Sensing Images via Semantic Matching and Edge Alignment

    Full text link
    Recently, relying on convolutional neural networks (CNNs), many methods for salient object detection in optical remote sensing images (ORSI-SOD) are proposed. However, most methods ignore the huge parameters and computational cost brought by CNNs, and only a few pay attention to the portability and mobility. To facilitate practical applications, in this paper, we propose a novel lightweight network for ORSI-SOD based on semantic matching and edge alignment, termed SeaNet. Specifically, SeaNet includes a lightweight MobileNet-V2 for feature extraction, a dynamic semantic matching module (DSMM) for high-level features, an edge self-alignment module (ESAM) for low-level features, and a portable decoder for inference. First, the high-level features are compressed into semantic kernels. Then, semantic kernels are used to activate salient object locations in two groups of high-level features through dynamic convolution operations in DSMM. Meanwhile, in ESAM, cross-scale edge information extracted from two groups of low-level features is self-aligned through L2 loss and used for detail enhancement. Finally, starting from the highest-level features, the decoder infers salient objects based on the accurate locations and fine details contained in the outputs of the two modules. Extensive experiments on two public datasets demonstrate that our lightweight SeaNet not only outperforms most state-of-the-art lightweight methods but also yields comparable accuracy with state-of-the-art conventional methods, while having only 2.76M parameters and running with 1.7G FLOPs for 288x288 inputs. Our code and results are available at https://github.com/MathLee/SeaNet.Comment: 11 pages, 4 figures, Accepted by IEEE Transactions on Geoscience and Remote Sensing 202

    Robust Learning Based Condition Diagnosis Method for Distribution Network Switchgear

    Full text link
    This paper introduces a robust, learning-based method for diagnosing the state of distribution network switchgear, which is crucial for maintaining the power quality for end users. Traditional diagnostic models often rely heavily on expert knowledge and lack robustness. To address this, our method incorporates an expanded feature vector that includes environmental data, temperature readings, switch position, motor operation, insulation conditions, and local discharge information. We tackle the issue of high dimensionality through feature mapping. The method introduces a decision radius to categorize unlabeled samples and updates the model parameters using a combination of supervised and unsupervised loss, along with a consistency regularization function. This approach ensures robust learning even with a limited number of labeled samples. Comparative analysis demonstrates that this method significantly outperforms existing models in both accuracy and robustness

    Eavesdropper localization in random walk channels

    Get PDF
    Eavesdroppers are notoriously difficult to detect and locate in traditional wireless communication systems, especially if they are silent. We show that in molecular communications, where information molecules undergo random walk propagation, eavesdropper detection and localization is possible if the eavesdropper is an absorbing receiver. This is due to the fact that the random walk process has a finite return probability and the eavesdropper is a detectable energy sink of which its location can be reverse estimated

    Bacterial relay for energy efficient molecular communications

    Get PDF
    In multi-cellular organisms, molecular signaling spans multiple distance scales and is essential to tissue structure and functionality. Molecular communications is increasingly researched and developed as a key subsystem in the Internet-of-Nano-Things paradigm. While short range microscopic diffusion communications is well understood, longer range channels can be inefficient and unreliable. Static and mobile relays have been proposed in both conventional wireless systems and molecular communication contexts. In this paper, our main contribution is to analyze the information delivery energy efficiency of bacteria mobile relays. We discover that these mobile relays offer superior energy efficiency compared with pure diffusion information transfer over long diffusion distances. This paper has widespread implications ranging from understanding biological processes to designing new efficient synthetic biology communication systems

    High-dimensional metric combining for non-coherent molecular signal detection

    Get PDF
    In emerging Internet-of-Nano-Thing (IoNT), information will be embedded and conveyed in the form of molecules through complex and diffusive medias. One main challenge lies in the long-tail nature of the channel response causing inter-symbolinterference (ISI), which deteriorates the detection performance. If the channel is unknown, existing coherent schemes (e.g., the state-of-the-art maximum a posteriori, MAP) have to pursue complex channel estimation and ISI mitigation techniques, which will result in either high computational complexity, or poor estimation accuracy that will hinder the detection performance. In this paper, we develop a novel high-dimensional non-coherent detection scheme for molecular signals. We achieve this in a higher-dimensional metric space by combining different noncoherent metrics that exploit the transient features of the signals. By deducing the theoretical bit error rate (BER) for any constructed high-dimensional non-coherent metric, we prove that, higher dimensionality always achieves a lower BER in the same sample space, at the expense of higher complexity on computing the multivariate posterior densities. The realization of this high-dimensional non-coherent scheme is resorting to the Parzen window technique based probabilistic neural network (Parzen-PNN), given its ability to approximate the multivariate posterior densities by taking the previous detection results into a channel-independent Gaussian Parzen window, thereby avoiding the complex channel estimations. The complexity of the posterior computation is shared by the parallel implementation of the Parzen-PNN. Numerical simulations demonstrate that our proposed scheme can gain 10dB in SNR given a fixed BER as 10-4, in comparison with other state-of-the-art methods

    Local convexity inspired low-complexity non-coherent signal detector for nano-scale molecular communications

    Get PDF
    Molecular communications via diffusion (MCvD) represents a relatively new area of wireless data transfer with especially attractive characteristics for nanoscale applications. Due to the nature of diffusive propagation, one of the key challenges is to mitigate inter-symbol interference (ISI) that results from the long tail of channel response. Traditional coherent detectors rely on accurate channel estimations and incur a high computational complexity. Both of these constraints make coherent detection unrealistic for MCvD systems. In this paper, we propose a low-complexity and noncoherent signal detector, which exploits essentially the local convexity of the diffusive channel response. A threshold estimation mechanism is proposed to detect signals blindly, which can also adapt to channel variations. Compared to other noncoherent detectors, the proposed algorithm is capable of operating at high data rates and suppressing ISI from a large number of previous symbols. Numerical results demonstrate that not only is the ISI effectively suppressed, but the complexity is also reduced by only requiring summation operations. As a result, the proposed noncoherent scheme will provide the necessary potential to low-complexity molecular communications, especially for nanoscale applications with a limited computation and energy budget
    • …
    corecore