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High-dimensional Metric Combining for

Non-coherent Molecular Signal Detection

Zhuangkun Wei, Weisi Guo, Bin Li, Jerome Charmet, and Chenglin Zhao

Abstract

In emerging Internet-of-Nano-Thing (IoNT), information will be embedded and conveyed in the

form of molecules through complex and diffusive medias. One main challenge lies in the long-tail

nature of the channel response causing inter-symbol-interference (ISI), which deteriorates the detection

performance. If the channel is unknown, existing coherent schemes (e.g., the state-of-the-art maximum a

posteriori, MAP) have to pursue complex channel estimation techniques, which will result in either high

computational complexity, or poor estimation accuracy that will hinder the detection performance. In

this paper, we develop a novel high-dimensional non-coherent detection scheme for molecular signals.

We achieve this in a higher-dimensional metric space by combining different non-coherent metrics

that exploit the transient features of the signals. By deducing the theoretical bit error rate (BER) for

any constructed high-dimensional non-coherent metric, we prove that, higher dimensionality always

achieves a lower BER in the same sample space, at the expense of higher complexity on computing

the multivariate posterior densities. The realization of this high-dimensional non-coherent scheme is

resorting to the Parzen window technique based probabilistic neural network (Parzen-PNN), given its

ability to approximate the multivariate posterior densities by taking the previous detection results into a

channel-independent Gaussian Parzen window, thereby avoiding the complex channel estimations. The

complexity of the posterior computation is shared by the parallel implementation of the Parzen-PNN.

Numerical simulations demonstrate that our proposed scheme can gain 10dB in SNR given a fixed BER

as 10−4, in comparison with other state-of-the-art methods.
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Non-coherent detection, high-dimensional metric, Bayessian rule, Parzen-probabilistic neural net-
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I. INTRODUCTION

Recent advances in nano-technology have attracted widespread interests in a range of applica-

tions, including the Internet-of-Nano-Things (IoNT) [1], [2], precision medicine [3], and covert

signalling in electromagnetically denied environments. To support these, increasing efforts have

been spent on the studies of molecular communications via diffusion (MCvD), whereby digital

information is modulated via the chemical structures of molecules, and then undergo a combi-

nation of diffusion and advection propagation. Compared with the traditional electromagnetic

waves (EMW) or acoustic waves [4], the stochastic nature of the propagation allows nano-scale

information carriers to diffuse through complex medias, thereby making MCvD a promising

communication candidate for bioengineering applications.

In the context of the signal detection in the MCvD, three challenges should be considered.

First, the long-tail nature of the channel response causes severe inter-symbol-interference (ISI),

which will deteriorate the accuracy of signal detection. Second, the underlying diffusion model

will be inaccurate (or even unavailable) when dealing with complex channels (e.g., a micro-

fluidic and absorbing channels with complex and irregular shapes obstacles [5]–[9]). In this

view, understanding a total channel state information (CSI) requires a large amounts of resources,

therefore making those model-related detection schemes less practical. Third, a nano-receiver

aiming at measuring the number of target molecules should be subject to a limited energy

expenditure and also ensure real-time communication.

A. Related Works

The pure mass diffusion channel impulse response (CIR) and the noise distribution formulation

are well established (even for certain boundary and reaction conditions). As such, there are

significant efforts on developing coherent signal processing schemes. Such coherent schemes

pursue signal detection, leveraged on the estimated CSI to compensate the channel effect (e.g.,

the ISI). For instance, we can list various coherent detection as well as channel estimation

algorithms in [10]–[13]. The state-of-the-art maximum a posteriori (MAP) [11] uses a designed

pilot sequence provided from [10] to estimate the CSI and then relies on the MAP concept

to detect molecular signals. However, these coherent inference schemes have two drawbacks.

First, the coherent schemes relying on the CSI acquisitions in [10] are only practical when the

coherence time of the MCvD channels are relatively large [14]. Otherwise, for the scenarios

where the channels are time-varying rapidly, they have to repeatedly track the CSI variations in
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order to ensure the detection accuracy, which inevitably causes long pilot sequence overhead,

and substantial energy consumption. Second, the coherent schemes are sensitive to the erroneous

estimations of the CSI. Such errors may lead to the unreliable computations of the posterior

densities, which if used for the coherent detection process (e.g., MAP), may result in low

detection accuracy (as is shown in the Figs. 7-8 in the Simulation section).

Alternatively, the other group of detection method is referred to as non-coherent schemes,

which do not rely on the availability of the CSI for signal detection. Such schemes can be

assisted by the ISI mitigated methods such as enzyme equalizer [15], [16], and the stochastic

resonance [17]. The popular non-coherent schemes for MCvD are listed in [14], [17]–[20].

We analyze the advantages and drawbacks of these papers in the following. The optimal non-

coherent maximum likelihood (ML) detectors (for multiple-symbol MS, and symbol-by-symbol

SS) have been proposed and studied in [14], which considered an accurate Poisson model,

and provided optimal (or suboptimal) detection algorithms for MCvD. The results showed a

promisingly lower bit error rate (BER) in the case of the negligible ISI (which can be obtained

by the enzyme equalizer in [15], [16]). The minor challenge lies in that, for the case where ISI is

intensive, the detection accuracy saturates to a BER floor, suggesting the limitation to strong ISI

scenarios. Then, in [18], the constant-composition codes have been proposed to further address

the ISI issue of the non-coherent ML detectors, at the expense of a decrease in data rate, as

it introduces extra bits for coding. In our previous papers [17], [19], [20], we proposed three

metrics for non-coherent detectors, aiming to address the ISI issue by exploiting the transient

features of molecular signals that are insensitive to ISI. Premised on the metrics, these non-

coherent detectors transform the detection issue into an two-hypothesis test, thereby providing

a new paradigm for signal detection in MCvD with non-trivial ISI. However, such metric based

non-coherent detectors linearly combine the three metrics, which does not fully employ the

transient features and results in a loss of signal-to-noise ratio (SNR). Also, there is still a lack of

understanding on the theoretical performance bound of the proposed metric based non-coherent

detectors. These two open challenges constitute the motivation to extend our previous researches.

B. Contributions

In this work, we suggest a novel non-coherent detection scheme for MCvD, based on a newly

designed high-dimensional metric. To sum up, the main contributions of this paper are listed as

follows:
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(1) A high-dimensional metric is designed via an exploration of the transient features of

the molecular signals. Compared with the coherent detection schemes that require the CSI to

compensate the ISI effect, such feature-based metric is inherently insensitive to the ISI, therefore

enabling the design of the non-coherent detection. Also, as opposed to our previously proposed

linear non-coherent works in [17], [19], [20], the high-dimensional metric is capable of improving

the detection accuracy, as it constructs the multivariate posterior functions, and thereby has a

greater signal-to-noise ratio (SNR). The proof is in Eqs. (24)-(28).

(2) From the theoretical perspective, we compute the theoretical BER for any designed high-

dimensional non-coherent scheme premised on the Bayesian inference. Specially, we prove

that, as the high-dimensional non-coherent metrics are constructed by the same samples, the

metric with higher dimensions has a lower BER. This further indicates that our proposed high-

dimensional non-coherent scheme outperforms the previously linear ones, and that the lower-

bound of BER converges to that of the coherent MAP.

(3) Given the unknown CIR, in order to approximate the posterior probability density functions

(PDFs) of the high-dimensional metric, but still avoid the complex parameter estimations, we

suggest the Parzen window technique based probabilistic neural network (Parzen-PNN). We

prove that by adopting a Gaussian Parzen window, the Parzen-PNN can approach the theoretical

BER. Other than the conventional channel estimation algorithms that suffer from the substantially

computational complexity, and the long pilot sequence overhead, this Parzen-PNN directly takes

the previous detection results into a channel-independent Gaussian Parzen window to construct

the approximated PDFs, therefore avoiding the computational burden on CSI acquisition. It is

noteworthy that when comparing with the previously proposed linear non-coherent schemes, the

Parzen-PNN has no low-complexity advantages as it computes the multivariate PDFs. However,

attributed to the parallel property of the Parzen-PNN, the multivariate PDF computations can be

assigned into each parallel threats [21]–[23]. Therefore, it is capable of ensuring the real-time

communication and the limited energy-expenditure for MCvD scenarios.

(4) We evaluate the detection performance of our proposed high-dimensional non-coherent

scheme via simulations. The results demonstrate that the accuracy of signal detection is improved

about 10dB in SNR given a fixed BER as BER=10−4, as opposed to our previous algorithm, and

the MAP with the unknown CSI. Also, the computational complexity and the storage resources

are much lower than that of the coherent MAP (as is shown in Table. 1). Hence, by casting

the accurate detection into an energy-efficient framework, the proposed scheme shows the great
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Fig. 1. Illustration of MCvD system. (a) gives the schematic flow where the binary information α = [α0, · · · , αk]T are

modulated by the Nano-transmitter via molecules, which will then propagate through the diffusive channel h(t), and received

by the nano-receiver. After sampling the received signal, the receiver will construct the high-dimensional metric and then rely

on the Parzen-PNN algorithm to detect the information α̂ = [α̂0, · · · , α̂k]T . (b) shows the different cases of diffusive channels

and their corresponding CIRs

promise to the MCvD applications.

The rest of this article is structured as follows. In Section II, the system structure of the

MCvD is specified, along with a short description of the state-of-the-art MAP and our previ-

ously proposed linear non-coherent schemes. In Section III, we elaborate our designed high-

dimensional non-coherent scheme, compute its theoretical BER, and prove that it has a better

communication accuracy than the low-dimensional non-coherent schemes. In Section IV, we

introduce the Parzen-PNN with the aim of the realization of our scheme. Numerical simulations

are provided in Section V. Finally, we conclude this study in Section VI along with discussions

of application areas and future impact.

II. SYSTEM MODELS

A. Molecular Communications

Similar to an EMW-based communication system, a generalized model for MCvD is illustrated

in Fig. 1, consisting of a nano-transmitter, a propagation channel, and a nano-receiver.

1) Nano-transmitter: The nano-transmitter may be either a single cell/organism in a biological

system, or an artificially designed hardware. The ON/OFF key (OOK) information bit αk = j ∈

{0, 1} (k = 1, · · · ,+∞) can be modulated via either a number of a specific type of molecules,
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or the phase (i.e., interval) [24]. Here, we consider the amplitude shift key (ASK) from [13].

The modulated signal, denoted as s(t) can be thereby expressed as:

s(t) = Q ·
∞∑
k=0

αk · δ(t− kTb), (1)

where Tb is the bit interval, and Q represents the emitted number of the molecules. Here, δ(·)

accounts for the Dirac function that is adopted to describe the pulse shape.

2) Propagation channel: Typically, a diffusive channel model and its corresponding CIR

(denoted as h(t)) remains unknown due to the infeasible computations of the complex channel

properties (e.g., a mixture with absorbing and obstacles, presence of advection forces, fluctuating

channel parameters...etc.). Hence, we assume an unknown CIR for our high-dimensional non-

coherent signal detection, by randomly selecting one of the two widely-used diffusion models

in Eq. (2) for performance analysis and comparisons with the state-of-the-art MAP. The two

models (including the passive and the absorbing channels) and their CIRs are given as follows

[7], [9], [15], [25]:

h(t) =


V

(4πDt)3/2
exp

(
− (r−vt)2

4Dt
− βt

)
passive

R
R+r

r√
4πDt3

exp
(
− (r−vt)2

4Dt
− βt

)
absorbing

(2)

where V gives the volume of a spherical nano-receiver with its radius R, r is the transmitted

distance, D represents the diffusion coefficient, v is the velocity of the drift, and β is the

degradation exponent of the enzyme interactions.

As we assign various parameters for Eq. (2), we can see the different CIRs in Fig. 1(b). It is

noteworthy that although the exact shapes of the CIRs depends heavily on the model expressions

and their model-related parameters, there are still transient features in common, e.g., an obvious

rising edge for the appearance of an 1-bit, the inflexions, and the signal-difference between two

adjacent bits, which may give hints for the design of a non-coherent detection paradigm in the

receiver.

3) Nano-receiver: A nano-scale receiver may include two components [26]: (i) the sensory

units that sense and convert signaling molecules into quantities for detection, and (ii) the signal

processing unit for signal detection. Here, we describe the formulas of the signal model of

received molecules. The biological implementation of the nano-receiver will be discussed in

Section IV. D.
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7

At the receiver end, the received signal is expressed by counting the number of observed

molecules. Here, a multi-sample receiver is adopted. Let Tb denote the symbol interval and Ts

denote the sampling interval (subject to Nyquist theorem [11], [20] with MTs = Tb). Then, the

received signal at the sampling time i · Ts ∈ ((k − 1)Tb, kTb], denoted as yi, can be expressed

via the Poisson distribution, i.e. [26],

yi ∼ P

(
k∑

l=k−L+1

Q · hi−(l−1)M · αl + ε̄int

)
, (3)

where L denotes the length of the ISI, hi = h(iTs), and ε̄int represents the mean number of

molecules that originates from the external interfering noise. Deduced from Eq. (3), an additive

signal model is derived, i.e. [26],

yi = Q · hi−(k−1)M · αk︸ ︷︷ ︸
current signal

+
k−1∑

l=k−L+1

Q · hi−(l−1)M · αl︸ ︷︷ ︸
ISI

+ εi + εint︸ ︷︷ ︸
noise

. (4)

In Eq. (4), Qhi−(k−1)M · αk accounts for the current information signal that is required to be

detected.
∑k−1

l=1 Q · hi−(l−1)M · αl gives the ISI induced by previously transmitted bits due to

the long tail nature of h(t). The noise component i.e., εi + εint involves the signal-dependent

diffusion noise, εi and the signal-independent interference noise, εint ∼ P(ε̄int). The distribu-

tion of the diffusion noise component εi can be computed in accordance with Eq. (3), i.e.,

εi ∼ P0(
∑k

l=1Qhi−(l−1)M ·αl)1, which makes it signal-dependent. In the following, we consider

the signal-independent noise for analysis, under the assumption that the external noise εint

is dominant. In the simulation section (Section V), we demonstrate that the proposed high-

dimensional non-coherent scheme can also achieve a reliable BER, when the noise is signal-

dependent.

With the help of Eqs. (3)-(4), the purpose of this paper is to detect the current informative bit

αk from the received signal y1:kM = [y1, ..., ykM ]T in the absence of the expression of the CIR

h(t), Q, and the means of the signal-dependent and signal-independent noises.

B. Two State-of-the-Art Methods for Comparison

1) Coherent MAP: In general, an MAP detector aims at maximizing a posteriori of the

unknown information bits conditioned on the received samples. The coherent MAP for MCvD

1Here, the notation X ∼ P0(λ) represents the distribution of X = Y − λ with Y ∼ P(λ).
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is provided in [11]. Denote h̃k =
∑kM

i=(k−1)M+1 hi, and ỹk =
∑kM

i=(k−1)M+1 yi. The CSI is defined

as uk =
∑k

l=k−L+1Q · h̃l−k+1 · αl, whose value belongs to a size of 2L set S. The maximal

posterior density is computed as [11], [27], [28]:

max
α1:k

p(α1:k|ỹ1:k) = max
u1:k

p(u1:k|ỹ1:k) ∝ max
u1:k

p(ỹ1:k,u1:k)

= max
u1:k

p(u1)p(ỹ1:k,u2:k|u1)

= max
u1

p(u1)p(ỹ1|u1) ·max
u2:k

p(ỹ2:k,u2:k|u1)

= max
u1

p(u1)p(ỹ1|u1) ·max
u2

p(u2|u1)p(ỹ2|u2) · · · · ·max
uk

p(uk|uk−1)p(ỹk|uk)

(5)

Eq. (5) is realized via the Viterbi tracing [27], [28]. At first, for any uk ∈ S, p(ỹk|uk) is computed.

Then, for each ul ∈ S, l = k, · · · , 1, we compute max
ul

p(ul|ul−1)p(ỹl|ul) and store the correspond-

ing transition ul−1 → ul. The iteration ends at l = 1, with û1 = argmaxu1∈S p(u1)p(ỹ1:k,u2:k|u1).

Then, ûl, 2 ≤ l ≤ k can be recursively identified via the stored transitions. Finally, the corre-

sponding bits α1:k are derived given uk =
∑k

l=k−L+1Q · h̃l−k+1 · αl.

It is noteworthy that, however, in the above coherent MAP, the accurate estimation of the CIR

will be indispensable, as one needs to compute the likelihood density p(ỹl|ul) and the transitional

probability p(ul+1|ul) for the Viterbi tracing. This will cause large expenditures of computation

and storage resources [20].

2) Linear non-coherent method: In essence, the previously designed non-coherent method

aims at amplifying the SNR via a linear combination of three metrics (i.e., ck,1, ck,2 and ck,3)

that explore the transient features of molecular signals. The signal detection process is pursued

by constructing clinear
k , and comparing it with a heuristic threshold ηk, i.e., [17]

clinear
k = ck,1 + ck,2 + ck,3

α̂k=1

≷
α̂k=0

ηk. (6)

In Eq. (6), ck,1 is referred as the local geometry shape that characterizes the maximum inflexion

induced by 1-bit, ck,2 describes the inflexion caused by the new arrival of 1-bit, while ck,3 gives

the signal-difference between successive bits. However, two drawbacks still remain. Firstly, ck,1

performs poorly as the ISI increases, due to the fluctuating inflexions in the presence of a strong

ISI. Secondly and more importantly, the effect of the SNR amplification is not promising, due

to the limitation of the 1-dimensional metric (which will be analyzed in Section III. D).
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Fig. 2. Illustration of sub-metrics. (a) gives the local rising edge metric zk,1, whilst (b) shows the successive properties that

contains the inflexion metric zk,2 and the energy-difference zk,3

III. THEORY OF HIGH-DIMENSIONAL NON-COHERENT DETECTION

In this section, we elaborate the theory of a novel high-dimensional non-coherent detection

scheme for MCvD. We firstly construct the high-dimensional metric by re-designing and re-

combining the metrics that explore the transient features of molecular signals. Then, premised

on the high-dimensional metric, the theoretical BER is deduced via the computation of the

decision surface. It is noteworthy that the non-coherent detection refers to the schemes that do

not rely on the availability of the CSI, which indicates the unavailability of such decision surface

for detection. As such, we only use it for the computation of the theoretical BER. The realization

of this high-dimensional non-coherent detection scheme, provided in Section IV, does not rely

on this decision surface.

A. Construction of High-dimensional Metric

In comparison with the linear metric in Eq. (6), the d-dimensional metric denoted as zk is a

vector composed of d sub-metrics (e.g., the rising edge, and the successive properties between

adjacent symbols) that can describe the transient features of the signal. Here, we express zk via

a d× kM transformation matrix Ad×kM , i.e.,

zk = Ad×kM · y1:kM , (7)

where each row of zk denotes one sub-metric.
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10

In the context of the MCvD, d = 3 sub-metrics are designed by respectively exploring 1) the

local rising-edge in each symbol, denoted as zk,1, 2) the two successive properties between two

adjacent symbols, denoted as zk,2 and zk,3, i.e. ,

zk = [zk,1, zk,2, zk,3]
T . (8)

1) Local rising-edge: Taking the kth interval with M = Tb/Ts samples as an example, in

the case of αk = 1, the output yi will have a distinct rising edge. As is shown in Fig. 2(a),

this rising edge can be expressed by the difference of its maximum (computed by averaging its

neighbourhood Nmax) from the beginning N0. In practice, by specifying the widths of Nmax and

N0 to be |Nmax| = |N0| = M/4, we define the metric of the local rising-edge as:

zk,1 ,
1

|Nmax|
∑
i∈Nmax

yi −
1

|N0|
∑
i∈N0

yi. (9)

It is easily noted that in the case of αk = 1, zk,1 will be larger than 0, otherwise, it will be

smaller that 0 when αk = 0. Also, compared with the previously designed geometry shape i.e.,

ck,1 in Eq. (6), the rising edge (i.e., zk,1) will not disappear with an increasing intensity of the

ISI, thereby capable of characterising the transient feature of the molecular signals in different

conditions of the ISI. In these views, zk,1 can be employed as a high-performance metric to

distinguish whether there are new arrivals of molecules induced by 1-bit at the nano-receiver at

current time interval.

2) Successive properties: When it comes to two successive slots k − 1 and k, the transient

features will be quite different with respect to two cases (i.e., αk = 1 and αk = 0). Here, we adopt

our previously designed sub-metrics (i.e., the minimum inflexion ck,2 and the energy-difference

ck,3, as is shown in Fig. 2(b)), i.e.,

zk,2 , ck,2 = − 1

|Ninfx|
·
∑
i∈Ninfx

yi +
1

2
·

 1

|Nleft|
∑
i∈Nleft

yi +
1

|Nright|
∑
i∈Nright

yi

 , (10)

zk,3 , ck,3 =
1

M
·
(k+1)M∑
i=kM+1

yi −
1

M
·

kM∑
i=(k−1)M+1

yi. (11)

In Eqs. (10)-(11), Ninfx is the set composed of the minimum inflexion and its neighbourhoods.

Nleft and Nright are the left and right sets of Ninfx. Detailed settings of Ninfx, Nleft, and Nright are

provided in [17].
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11

3) Advantages of high-dimensional metric: The high-dimensional metric in Eqs. (8)-(11) has

two merits. First, the metric transforms the observation yi that are contaminated by the ISI

into a new domain, composed by zk,1, zk,2, zk,3 which are insensitive to ISI [17], [19], [20].

This suggests that the high-dimensional metric composed of such sub-metrics can inherently

counteract the ISI, without the usages of the complex channel estimations for ISI compensation

(as the coherent schemes do). Hence, this high-dimensional metric convert the detection with ISI

into a binary detection framework, which enables potential designs of the non-coherent schemes.

Second, the usages of sets i.e., Nmax, N0 and Ninfx instead of the exact positions of the

maximal value, the starting point and the inflexion point in Eqs. (9)-(11) help neutralize the

sensitiveness to accurate synchronization. For instance, with a small synchronization error (that

can be obtained via the technique in [29]), the exact position of the maximal value is still in

the set Nmax, making the sub-metric zk,1 insensitive to the inaccurate synchronization. We will

demonstrate the detection accuracy versus synchronization error in the Fig. 6 of Section V.

B. Distribution of High-dimensional Metric

Due to the central limit theorem (CLT), the sub-metrics zk,1, zk,2 and zk,3 from Eqs. (9)-(11)

that are the weighted summations of the observation yi, can be regarded as Gaussian random

variables (RVs), when the sample rate is large (e.g., M = Ts/Tb ≥ 50). Hence, the d-dimensional

zk follows the multivariate normal distribution, i.e.,

zk ∼


N (µ1,Σ), αk = 1,

N (µ0,Σ), αk = 0.

(12)

where µj = E(zk|αk = j) represents the mean of zk. Σ gives the covariance matrix.

Then, according to Eq. (12), the likelihood PDF of the d-dimensional metric zk conditioned

on the different information bits (i.e., αk = 1 or αk = 0) are:

ϕ(zk|αk = j) =
1√

(2π)d|Σ|
exp

(
−1

2
(zk − µj)TΣ−1(zk − µj)

)
. (13)

Here, it is noteworthy that the likelihood PDF in Eq. (13) also accounts for any designed d-

dimensional metric zk in Eq. (7), with its mean µj and variance Σ.
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C. Decision Process

After specifying the form of the d-dimensional metric and its distributions, we then study the

detection process. By adopting the Bayesian rule, the detection process is equivalent to compute

and compare the posterior PDFs of zk from different cases of αk = 0 and αk = 1, i.e.,

p(αk = 1|zk)
p(αk = 0|zk)

(a)
=
ϕ(zk|αk = 1)

ϕ(zk|αk = 0)

α̂k=1

R
α̂k=0

1. (14)

In Eq. (14), p(αk|zk) = ϕ(zk|αk) · Pr{αk} represents the posterior PDF. (a) accounts for the

assumption of the identically prior probability as Pr{αk = 0} = Pr{αk = 1} = 0.5.

Note that the detection process in Eq. (14) cannot be pursued, as one does not know the

parameters (i.e., µ and Σ) of the likelihoods in Eq. (13). We will address this in Section IV.

D. Theoretical Performance Analysis

Premised on the construction of the high-dimensional metric zk, we then compute the theo-

retical BER, and then compare it with different non-coherent schemes.

1) Theoretical Decision Surface: The computation of the theoretical BER requires the decision

surface from Eq. (14), which can be transformed as the logarithm difference i.e.,

lnϕ(zk|αk = 1)− lnϕ(zk|αk = 0) = 0, (15)

Taken Eq. (13) into the left-hand of Eq. (15), the decision surface is computed as:

G(zk) = 0, (16)

with

G(zk) = (µT1 − µT0 )Σ−1zk −
1

2
(µT1 Σ−1µ1 − µT0 Σ−1µ0). (17)

With the help of the decision surface in Eqs. (16)-(17), we then compute the theoretical BER.
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13

2) Computation of BER: The theoretical BER of the d-dimensional zk consists of two identical

error probabilities, i.e.,

Pe(zk) =

d︷ ︸︸ ︷∫
· · ·
∫

G(z)>0

ϕ(z|αk = 0)dz +

d︷ ︸︸ ︷∫
· · ·
∫

G(z)<0

ϕ(z|αk = 1)dz

=2

d︷ ︸︸ ︷∫
· · ·
∫

G(z+µ0)>0

1√
(2π)d|Σ|

exp

(
−1

2
zTΣ−1z

)
dz1 · · · zd

(i)
=2

d︷ ︸︸ ︷∫
· · ·
∫

G(Γ·x+µ0)>0

|J|√
(2π)d|Σ|

exp

(
−1

2
xTΛ−1x

)
dx1 · · · xd

(ii)
= 2

d︷ ︸︸ ︷∫
· · ·
∫

G(Γ·Λ0.5
·u+µ0)>0

1√
(2π)d

exp

(
−1

2
uTu

)
du1 · · ·ud

(iii)
= 2 · Φ

(
−1

2

√
(µ1 − µ0)

TΣ−1(µ1 − µ0)

)
.

(18)

The explanation of Eq. (18) is given as follows.

(i) As we observe that zT ·Σ·z holds for the quadratic form with Σ a d-dimensional symmetric

matrix, we have z = Γ · x, and zT · Σ−1 · z = xT · Λ−1 · x, where Λ = diag{λ1, · · · , λd} is

composed of d different eigenvalues of Σ, and Γ is composed of the corresponding d normalized

eigenvectors, such that Σ = Γ · Λ · Γ−1. Hence, by replacing z with x, the equation of (i) is

achieved with the help of the Jacobian determinant, as

|J| =

∣∣∣∣∣∣∣∣∣
∂z1
∂x1

· · · ∂z1
∂xd

... . . . ...
∂zd
∂x1

· · · ∂zd
∂xd

∣∣∣∣∣∣∣∣∣ = |Γ| = 1. (19)

(ii) We here use u = Λ−0.5x to replace x. Then, by noticing that |Σ| = |Λ|, we can obtain

the equation of (ii).

(iii) Before we explain the establishment of (iii), we firstly prove the equality as follows:
+∞∫
−∞

1√
2π

exp

(
−z

2

2

)
· Φ (az + b) dz ≡ Φ

(
b√

1 + a2

)
, (20)

where

Φ(x) ,
∫ x

−∞

1√
2π

exp

(
−z

2

2

)
dz. (21)
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This is because
+∞∫
−∞

1√
2π

exp

(
−z

2

2

)
· Φ (az + b) dz

=

∫ b

−∞

∂
(∫ +∞
−∞

1√
2π

exp
(
− z2

2

)
· Φ (az + x) dz

)
∂x

dx

=

∫ b

−∞

1√
2π(1 + a2)

exp

(
− x2

2(1 + a2)

)
dx

=Φ

(
b√

1 + a2

)
.

(22)

Then, by taking Eq. (20) back to (ii), we can prove the (iii) via

2 ·

d︷ ︸︸ ︷∫
· · ·
∫

G(Γ·Λ0.5
·u+µ0)>0

1√
(2π)d

exp

(
−1

2
uTu

)
du1 · · ·ud

=2 ·
+∞∫
−∞

1√
2π

exp

(
−u

2
1

2

)
· · ·

+∞∫
−∞

1√
2π

exp

(
−
u2d−1

2

)
·

+∞∫
−

∑d−1
i=1

ξi·ui−B
ξd

1√
2π

exp

(
−u

2
d

2

)
du1 · · · dud

=2 ·
+∞∫
−∞

1√
2π

exp

(
−u

2
1

2

)
· · ·

+∞∫
−∞

1√
2π

exp

(
−
u2d−1

2

)
· Φ

(∑d−1
i=1 ξi · ui −B

ξd

)
du1 · · · dud−1

=2 ·
+∞∫
−∞

1√
2π

exp

(
−u

2
1

2

)
· · ·

+∞∫
−∞

1√
2π

exp

(
−
u2d−1

2

)
· Φ

(
ξd−1
ξd

ud−1 +
d−2∑
i=1

ξi
ξd
ui −

B

ξd

)
du1 · · · dud−1

=2 ·
+∞∫
−∞

1√
2π

exp

(
−u

2
1

2

)
· · ·

+∞∫
−∞

1√
2π

exp

(
−
u2d−2

2

)
· Φ

∑d−2
i=1 ξiui −B√
ξ2d + ξ2d−1

 du1 · · · dud−2

= · · · = 2 · Φ

(
− B∑d

i=1 ξ
2
i

)
= 2 · Φ

(
−0.5ξT · ξ

ξTξ

)
= 2 · Φ

(
−1

2

√
ξT · ξ

)
,

(23)

where ξ = [ξ1, . . . , ξd]
T = Λ−0.5Γ−1 · (µ1 − µ0), and B = 0.5 · ξT · ξ.

Hence, in Eq. (18), we give the general form of BER for any designed d-dimensional metric

zk, as one can take the metric-related µj and Σ into Eq. (18). For instance, in our analysis of

the MCvD, we can derive the theoretical BER of our d = 3 metric as well as the one of our

previously proposed linear (d = 1) metric in [17], and their BER performances can be compared

from the theoretical perspective.
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3) Comparison among non-coherent schemes: We compare the BERs between the non-

coherent schemes with metrics as a designed d-dimensional zk, and a (d1 ≤ d)-dimensional

metric, i.e., A · zk. Here, we assume rank(A) = d1, otherwise its dimension can be reduced

such that the determinant of its covariance matrix is positive, i.e., |Σ(A · zk)| > 0. We give the

comparison result as:

Pe(zk) ≤ Pe(A · zk), (24)

where the equality holds as d1 = d.

The proof of the Eq. (24) is given as follows. Given Eq. (18), and the monotonically increasing

property of Φ(x) with respect to x, the comparison between Pe(zk) and Pe(A · zk) can be

converted as analyzing the quadratic values of µT (Σ−1−AT (AΣAT )−1A)µ with µ = µ1−µ0

and Σ(A ·zk) = AΣAT . In this view, Eq. (24) is equivalent with Σ−1−AT (AΣAT )−1A being

positive semidefinite.

(i) In the case of rank(A) = d1 = d, we have

Σ−1 −AT (AΣAT )−1A = 0 (25)

which proves the equality of the Ineq. (24)

(ii) For d1 < d, we consider only d1 = d − 1, and other cases d1 < d − 1 can be proved

successively by replacing d as d− 1. We firstly divide A = A1 ·Γ−1 (where Γ is the matrix of

d eigenvectors of Σ, and therefore rank(Γ) = d), with A1 = A · Γ. Then, the metric can be

converted as A · zk = A1 ·Γ−1zk whereby the covariance matrix of Γ−1 · zk is Σ(Γ−1 · zk) = Λ.

Also, note that A1 = Π · A2, with Π the multiplications of elementary row transformations

(rank(Π) = d − 1), and A2 = [Id1×d1 a] where a = [a1, · · · ad−1]T . Hence, according to (i),

with Pe(Γ
−1zk) = Pe(zk), and Pe(A · zk) = Pe(Π ·A2 ·Γ−1zk) = Pe(A2 ·Γ−1zk), we only need

to prove that Λ−1−AT
2 (A2ΛAT

2 )−1A2 is a positive semidefinite matrix. This can be illustrated
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as it has only non-negative eigenvalues:

Λ−1 −AT
2

(
A2ΛAT

2

)−1
A2

=Λ−1 −AT
2

(
diag(λ1, . . . , λd−1)

−1 − ζ · %%T
)
A2

=ζ ·

%%T −%

−%T 1


=ζ ·Υ · diag

tr
%%T −%

−%T 1

 , 0, · · · 0

 ·Υ−1
=Υ · diag

(
ζ · tr

(
1 + %T%

)
, 0, · · · 0

)
·Υ−1,

(26)

with % = [a1
√
λd/λ1, . . . , ad−1

√
λd/λd−1]

T , ζ = 1/(1 + λd
∑d−1

i=1 a
2
i /λi), and Υ the eigenvector

matrix, which therefore proves the Ineq. (24).

The meaning of the Eq. (24) is explained as follows. First, it demonstrates that via using the

same samples, the metric with higher dimension has the lower BER, i.e.,

Pe(Ad×kM · y1:kM)

< Pe(A(d1<d)×d ·Ad×kM · y1:kM).
(27)

This further indicates that our designed 3-dimensional metric zk = [zk,1, zk,2, zk,3]
T outperforms

the previous linear one in [17] as zk,1 + zk,2 + zk,3, i.e.,

Pe(zk) < Pe(zk,1 + zk,2 + zk,3). (28)

Secondly, the Eq. (24) indicates that the lower-bound of any designed metric zk is the BER

of the MAP under the known of the CIR, i.e.,

Pe(zk) ≥ Pe(y1:k) ≥ Pe(MAP), (29)

as the Viterbi tracing algorithm can be pursued to reduce the BER by counteracting the effect

of the ISI.

However, we should also notice two aspects. For one thing, the coherent MAP can only reach

its theoretical BER if the CIR h(t) is known. Otherwise, its performance depends directly on

how accurate the estimation of the CIR is, which is difficult and will consume most of its

computational resources [20]. Secondly, there is a resource-performance trade-off as we select

and design the proper metric for the detection process. The performance of d-dimensional non-

coherent scheme betters as the d grows larger, yet at the expense of both computational and
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storage complexities with respect to d, especially when we need to compute (or approximate)

its d-dimensional multivariate likelihood PDFs in Eq. (13).

IV. PARZEN-PNN REALIZATION

It is noteworthy that the detection process in Eq. (14) requires the computations of the

likelihood PDFs conditioned on the mean µj and the covariance matrix Σ. Conventional channel

estimation technique may fall into ether a long overhead or a relative poor acquisition of such

parameters, especially for the covariance matrix Σ. As such, it is demanding to resort to an

alternative method that is capable of approximating the likelihood PDF in Eq. (13), but avoiding

the complex estimation process on µj and Σ. And here come the Parzen window technique and

its PNN based implementation.

A. Parzen Window technique

In essence, the Parzen-windowing technique [30] approximates the probability by defining a

window (given the window size) and a function on this window (i.e. referred as the window

function). Given a d-dimensional RV z with unknown distribution, Parzen-windowing approxi-

mates the corresponding PDF p(z) by directly extracting the samples within the window function

Π(z), i.e. [21], [30],

p(z) ' 1

N

N∑
n=1

1

ςd
· Π
(

z− z(n)

ς

)
, (30)

where z(n), n = 1, 2, ..., N is the samples, and ς denotes a smooth parameter that corresponds to

the width of the window function. The accuracy of the approximation depends on the design of

the window function Π(z), which should also be a PDF in order to guarantee its approximated

p(z) as a PDF [22].

In the context of the MCvD applications, the aim is to approximate the likelihood functions

ϕ(zk|αk) via Eq. (30). Here, we adopt a Gaussian Parzen window of Π(z), as we notice from

Eq. (12) that the d-dimensional metric zk follows a Gaussian distribution, i.e.,

Π(z) =
1

(2π)d/2
exp

(
−1

2
zTz

)
. (31)

Then, by taking this window function Π(z) into Eq. (30), we derive the approximated likelihood

as:
ϕ(zk|αk)

w
1

N

N∑
n=1

1

(2πς2)d/2
exp

(
−(zk − z(n))T (zk − z(n))

2ς2

)
.

(32)
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This Parzen window technique has two obvious merits. First, it avoids the complex estimations

of parameters, i.e., µj and Σ. By directly feeding the samples into the channel-independent

Gaussian Parzen window function, the Parzen window technique approximates the likelihoods

in Eq. (13) without the complex estimation of the channel parameters. Therefore, it has lower

computational complexity, compared with the channel estimation algorithms that require the

complex parameter acquisitions (especially the covariance matrix Σ). Second, this approximated

PDF approaches the theoretical perfectness when the number of samples grows infinity i.e.,

N → +∞, since:

lim
N→∞

1

N

N∑
n=1

1

(2πς2)d/2
exp

(
−(zk − z(n))T (zk − z(n))

2ς2

)
(a)
=

∫
Rd
p(z∗)

1

(2πς2)d/2
exp

(
−(zk − z∗)T (zk − z∗)

2ς2

)
dz∗

(b)
=

∫
Rd
ϕ(z∗|αk) · p(zk|z∗)dz∗

(c)
=ϕ(zk|αk).

(33)

In Eq. (33), (a) accounts for the mean expression of 1/(2πς2)d/2 exp(−(zk−z∗)T (zk−z∗)/(2ς2))

given the distribution of z∗. (b) holds for the fact that the sampled z∗ ∼ ϕ(z∗|αk), and the rest

follows a Gaussian PDF conditioned on z∗. The result of (c) resorts to the Chapman-Kolmogorov

function [31], meaning that likelihood estimation is perfect.

B. Implementation of Parzen Window Technique

In order to implement the Parzen window technique to derive the approximated likelihoods

in Eq. (32), and further pursue Eq. (14) for detection, we introduce the Parzen window based

probabilistic neural networks [23]. The structure of the Parzen-PNN is illustrated in Fig. 3. From

the input layer, the (d = 3)-dimensional metric zk is directly fed and serves as the Parzen-PNN

input. The pattern layer is composed of the N previously computed metrics, i.e., z(n) = zk−n,

labelled by the corresponding previous detection results α∗n = α̂k−n. The output layer contains

C = 2 class representing 0-bit and 1-bit respectively.

1) Training process: The training process of the Parzen-PNN is provided in Algo. 1, which

directly assigns the N values of pattern z(1), z(2), ..., z(N) into pattern layer, and then labels each

pattern as only one class of 0-bit and 1-bit via previous detection results. As such, the training

process replaces the use of the predefined pilot sequence, with the previous data that can reflect
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Pattern …

𝛼𝑘 = 1 𝛼𝑘 = 0

𝛼1
∗ =0 𝛼2

∗ =1 𝛼3
∗ =1 𝛼𝑁

∗ = 0

𝐳(1) 𝐳(2) 𝐳(3) 𝐳(𝑁)

Input 𝑧𝑘,1 𝑧𝑘,2 𝑧𝑘,3

Class

Fig. 3. Illustration of Parzen-PNN that consists of three layers, i.e., the input layer fed by the designed metric zk, the pattern

layer trained by the labels α∗1, α∗2, ..., α∗N , and the class layer for classification.

the variation of the time-varying channel. We provide the detailed derivation of z(1), z(2), ..., z(N)

as well as the corresponding labels as follows.

(i) At the beginning when all signals are unlabelled, we use our previously proposed linear

non-coherent scheme to label first N signals as 0-bit or 1-bit, i.e., [17]

zlinear
n = zn,1 + zn,2 + zn,3

α̂n=1

≷
α̂n=0

ηn, 1 ≤ n ≤ N

ηn = (1− a)ηn−1 + a
1

n

n∑
l=1

zlinear
l , a ∈ [0.9, 0.99].

(34)

From Eq. (34), we construct z(n) = [zn,1, zn,2, zn,3]
T with label α∗n = α̂n.

(ii) For any k > N , we use the previous detection results as the patterns, i.e., z(1) =

zk−1, · · · , z(N) = zk−N , with corresponding labels as α∗1 = α̂k−1, · · · , α∗N = α̂k−N .

In comparison with the conventional channel estimation algorithms that rely on the predefined

pilot sequence to estimate the parameters, the training process of Parzen-PNN avoids the complex

computation of µj , and Σ, but directly extracts z(1), z(2), ..., z(N) from previous data for further

likelihood computations in the detection process. Also, the Parzen-PNN is relatively simple

compared with the other neural network architectures, e.g., the back propagation (BP) networks,

and the radial basis function networks (RBFN) [32].

2) Detection process: After above training process, the Parzen-PNN can be then adopted

for signal detection. The detection algorithm is given by Algo. 2, which aims to compute the

approximated likelihoods in Eq. (32) via the extracted z(1), z(2), ..., z(N). For each time-slot k,

as we feed the d-dimensional metric zk into the input layer, each pattern construct the Parzen
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Algorithm 1 Training Algorithm for kth symbol
Input: Previous data metric z1 · · · , zk−1 with detection results α̂1, · · · , α̂k−1.

1: for n ∈ {1, 2, ...,min{k − 1, N}} do

2: Assign z(n) = zk−n, and α∗n = α̂k−n.

3: end for

Output: Return pattern values z(1), z(2), · · · , with labels α∗1, α
∗
2, · · · .

Algorithm 2 Detection Algorithm for kth symbol
Input: The trained Parzen-PNN, and the received signal at k time-step, i.e., y(k−1)M+1, · · · , ykM .

1: Compute high dimensional metric zk from Eqs. (9)-(11).

2: for n ∈ {1, 2, ..., N} do

3: Compute T (zk, z
(n)) via Eq. (35).

4: end for

5: Compute ∆1(zk) and ∆0(zk) via Eq. (36).

6: Derive α̂k by Eq. (37).

Output: Return α̂k.

window function by computing the inner difference from its pattern value z(n), i.e.,

Π

(
zk − z(n)

ς

)
∝ T (zk, z

(n)) = exp

(
−(zk − z(n))T (zk − z(n))

2ς2

)
. (35)

Then, the approximated likelihoods in Eq. (32) can be computed via the summation of each

T (zk, z
(n)) in the same category, i.e.,

∆j(zk) =
∑

∀n, s.t. α∗n=j

T (zk, z
(n)). (36)

Finally, the detection can be pursued by the classification decision, as

α̂k =

1, ∆1(zk) ≥ ∆0(zk),

0, ∆1(zk) < ∆0(zk).
(37)

3) Smooth parameter: As is observed from Eq. (32), the smooth parameter ς2 influences the

accuracy of likelihood approximation and thereby the performance of signal detection. To be

specific, a small value of ς2 will produce a spiky approximation of the likelihood PDF in Eq.

(13), giving rise to a rather curved decision surface and thereby causing extra miss detection.
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On the other hand, a large value of ς2 will lead to an over-smoothing likelihood density, making

it insensitive to the background noise. Here, we give two ideas to assign an appropriate ς2.

Compared Eq. (32) with Eq. (13), it is intuitive to determine the smooth parameter as ς2 =

|Σ|1/d. However, the estimation of the covariance matrix Σ requires great number of patterns

as well as computational resources. In this view, we use the product of the trace of Σ as an

approximation |Σ|, and assign ς2 as:

ς2 =

(
d∏
i=1

σ2
z,i

)1/d

, (38)

where σ2
z,i denotes the variance of ith sub-metric. In the proposed d = 3-dimensional noncoherent

scheme, even if the distribution of the channel noise is unknown, we can still treat the zk,1, zk,2

and zk,3 as Gaussian RVs, according to Eqs. (9)-(11). And their variances can be estimated via

the labelled previous data.

C. Complexity Analysis

After a complete algorithm description, we analyze the computational complexity, by con-

sidering both the time and the storage consumption. In our discussions, we roughly measure

this complexity by counting the total number of multiplication operations2. The complexity

comparison among different schemes is provided in Table. I.

For the designed (d = 3)-dimensional non-coherent scheme at k time-step, the times of

multiplications are 5+dN = O(N +dN), which consists of 5 for construction of metric zk, and

d×N for the detection process. Given the parallel structure of the Parzen-PNN, the exponential

computation in Eq. (35) can be realized via the N parallel threads, which makes it have only

d for time units. Thus, the total time consumption is 5 + d = O(d), at the expense of O(dN)

storage units. In this view, our scheme is suitable for real time communication, as we can spend

just O(d) time consumption for each informative bit detection.

For the previously proposed linear non-coherent scheme, at any k time-step, the computational

complexity lies in (i) the computations of the three metrics in Eqs. (9)-(11), and (ii) the heuristic

computation of the threshold ηk in Eq. (6). As such, the times of multiplications can be computed

as 8 = O(1). Given that the computation of ηk requires the summations of clinear
1 , · · · , clinear

k , the

storage needed for the linear non-coherent scheme is measured as O(k).

2Here, the exponential (or logarithm) operation is treated as several multiplications according to Taylor expansion.
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TABLE I

COMPARISON OF COMPLEXITY AMONG THREE DETECTION SCHEMES.

Methods/Complexity Total complexity Time consumption Storage

Proposed HD non-coherent O(dN) O(d) O(dN)

Linear non-coherent O(1) O(1) O(k)

Coherent MAP O(k2L +NL2) O(k2L +NL2) O(k2L)

Then, we compute the computational complexity of the coherent MAP scheme. The coherent

MAP consists of the channel estimation, and the signal detection. For the Viterbi tracing detection

process in Eq. (5), finding the maximum posterior density for current k time-step requires the

recursive computations from maxuk−1
p(uk|uk−1)p(ỹk|uk) to maxu1p(u2|u1)p(ỹ2|u2), with uk =∑k

l=k−L+1Q · h̃l−k+1 · αl for k ≥ L, and uk =
∑k

l=1Q · h̃l−k+1 · αl for 1 ≤ k < L Hence,

for each L ≤ k′ ≤ k, 2L likelihood densities will be computed for enumerating all potential

αk′−L+1:k′ ∈ {0, 1}L. For 1 ≤ k′ < L, 2k
′ likelihoods are computed. Given from Eq. (3), each

logarithm-form likelihood PDF includes one logarithm computation. As such, the total number

of multiplications for the MAP detection can be measured as (k − L+ 2)× 2L − 2 = O(k2L).

For the channel estimation algorithm, we adopt the ML channel estimation approach in [10],

whereby a predefined pilot sequence of length N is used to estimate the CSI. To do so, three

matrix (of size L × (N − L + 1)) multiplications, and a multiplication of such matrix with a

(N−L+1)×1 vector are used, which requires (N−L+1)×(2L2+L) times of multiplications.

Combined with the detection process, the total number of multiplications for coherent MAP with

ML channel estimation is (k−L+2)×2L−2+(N−L+1)× (2L2 +L) = O(k×2L+N×L2).

For the storage needed, the Viterbi tracing requires k observations, L CSI, as well as 2L(2k′)

likelihood densities for each L ≤ k′ ≤ k(1 ≤ k′ < L). As such, the storage required for the

coherent MAP is (k − L+ 2)× 2L − 2 + L+ k = O(k × 2L).

D. Implementation via Biological Circuits

Finally, we provide an outline of the biological design of the nano-receiver. The outline

includes the feasibility analysis on both the sensory units for sensing the signaling molecules,

and the proposed high-dimensional non-coherent scheme for signal detection.

For the sensory units, one can resort to the existing alcohol sensor in [33], and magnetic coils of
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the susceptometer in [34] respectively, based on which two MCvD systems using corresponding

molecules have been designed. For the Cell-to-cell communications we can rely on the Ca2+

signaling, which is central to a multitude of biological processes including neuronal signaling.

The concentration level of Ca2+ ions can be monitored using fluorescent Ca2+ indicators. For

example, lightâĂŞexcitable Calcium Green-1 has been used to image neuronal activity [35]. The

binding of Ca2+ ion to an indicator can lead to an increase fluorescence (quantum yield) or a

wavelength shift that can be monitored optically, i.e., [35]

Ca2+ + B� CaB

where B is the binding site, and CaB accounts for the calcium-bound complex. As such, by

setting the calcium ion as the messenger molecules to convey the OOK information, the man-

made nano-receiver fluorescent indicator can report on the number of molecules.

We then consider the biological design of the proposed detection scheme. The study in

[36] analyzed the protein-based signaling within biological cells. It is demonstrated that the

fundamental motif in all biological signaling is underpinned by the protein phosphorylation

and dephosphorylation (referred as the cascade cycles). In the cascade cycles, the input of the

protein phosphorylation transits the original state (0-state) into a new state (1-state), while the

input of the protein dephosphorylation reverses such process. As such, the cascade cycles enable

to construct various control and computational digital circuits (e.g., the RS-register, the AND,

and NAND gates, the adder and the multiplier [36]). Given that the proposed high-dimensional

non-coherent scheme includes only the adder and the multiplier (the exponential operation can

be approximated by numbers of multiplier and adder according to Taylor expansion), the study

in [36] thereby provides a great promise for implementation via the biological designed circuits.

V. NUMERICAL SIMULATIONS

In the following analysis, the performance of our proposed high-dimensional non-coherent

detection scheme (abbreviated as HD non-coherent) will be evaluated, in terms of the BER.

First, we examine the performance of the Parzen-PNN realization by considering the smoothing

parameter ς2, and the number of the patterns N respectively. Then, the detection accuracy to

synchronization error is tested. Finally, the comparisons between our proposed HD non-coherent

scheme, the linear non-coherent scheme, and the state-of-the-art MAP are pursued, with respect

to various SNR and the bit interval Tb that represents the intensity of the ISI.
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Fig. 4. Illustration of the importance of the smooth parameter on Parzen-PNN realization of the proposed HD non-coherent

scheme.

The involved parameters in this simulation are configured according to [37], which are typical

for nano-scale molecular communication between small biological cells [38]. As far as both the

passive and the absorbing properties of the nano-receiver are concerned, we consider a spherical

shape of the receiver with its radius as R = 0.225µm, and thus its volume as V = 4/3πR3 =

4.771× 10−2(µm)3. The sample rate Ts = M · Tb varies from the bit interval Tb, but we assure

M = 50 samples for each bit detection. For the diffusive channel, we assign the diffusive

coefficient as D = 5× 103(µm)2/s, the communication distance between the transmitter and the

receiver as r = 2µm, the drift velocity as v = 10−3m/s, and the degradation factor for enzyme

effect as β = 100/s.

A. Performance of Parzen-PNN

The performance of the Parzen-PNN realization is illustrated in Fig. 4 and Fig. 5, as we fix

the SNR = 5dB, and the Tb = 3× 10−4s.

We can firstly observe from the Fig. 4 that the smoothing parameter ς2 plays an important

role on the BER of the Parzen-PNN. Take the passive mode as an example. As ς2 increases

from 10−4 to 104, the BER decreases from 0.4, till reaching its optimal value (i.e., nearly 10−2),

and then begins to rebound. This is because that ς2 reflects the intensity of variance Σ when

approximating the likelihood PDF in Eq. (13) by using Eq. (32), and therefore neither a larger
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Fig. 5. Illustration of the BER convergence as the number of patterns N grows.

nor a smaller value of ς2 performs well. More importantly, it is noticed in Fig. 4 that, the

computation of ς2 = (σ2
z,1 ·σ2

z,2 ·σ2
z,3)

1/3 = 4.65 via Eq. (38) ensures the closeness to the optimal

BER. This suggests that a good performance of the Parzen-PNN realization can be achieved

when choosing and computing an appropriate smoothing parameter ς2.

Then, we demonstrate that given a proper smoothing parameter, the theoretical performance

provided in Eq. (18) can be approached, as we increase the number of the patterns, i.e., N . It

is observed from the Fig. 5 that the number of the patterns determines the BER performance of

the Parzen-PNN realization. For example, with the increase of the number from 10 to 200, the

BERs of both the absorbing and passive models converge to their theoretical limits (i.e., 0.06

for the absorbing and 0.07 for the passive). This verifies the correctness of Eq. (33) that proves

the perfect approximations of the Parzen approximation as N grows to infinity.

With the help of Fig. 4 and Fig. 5, we demonstrate that the Parzen-PNN realization can

approach the theoretical BER performance in the absence of any knowledge of the specific

channel models. This indicates that our proposed HD non-coherent detection scheme is suitable

for signal detection in MCvD. We will illustrate this in the following parts.
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Fig. 6. Illustration of the influence of synchronization error on the proposed HD non-coherent scheme. A tolerant BER can be

reached when the synchronization has a small error (e.g., < 10%).

B. Influence of Synchronization error

The sensitiveness of the proposed HD non-coherent scheme to synchronization error is illus-

trated in Fig. 5. The synchronization error is measured via the percentage of the deviation to

symbol interval, i.e., Tsynerr/Tb. We test three cases with different SNR and Tb (that representing

the intensities of the ISI). It is seen that the BER grows as the synchronization error increases.

For instance, when the error reaches 40%, the BER of the case SNR=5dB and Tb = 7 × 10−4

increases from 2× 10−4 to 5× 10−2. This result suggests that the performance of the proposed

HD non-coherent scheme is affected by the accuracy of the synchronization error.

More importantly, it is noteworthy that the proposed HD non-coherent scheme can also

provide a tolerant BER if the synchronization error is small. For example, within a small area

of synchronized error, i.e., < 10%, the BER from the case SNR=10dB Tb = 3× 10−4 increases

from 5 × 10−4 to 7 × 10−4, which indicates the low sensitiveness to the synchronization error.

The reason for this low sensitiveness lies in the construction of the metrics in Eqs. (9)-(11),

which use the average of the neighbouring values to extract the transient features. As such, even

if the synchronization has a small error, the extractions of rising edge, the inflexion, and the

signal difference between two adjacent symbols are still reliable for further detection process.
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Fig. 7. BER comparisons among different schemes with respect to the changes of the SNR. (a) provides the scenario with signal

independent noise. (b) presents the case with signal dependent noise. It is seen that in both cases, the proposed HD non-coherent

scheme outperforms the MAP with unknown CSI and linear non-coherent method.

C. Performance Comparisons

The BER comparisons between the proposed HD noncoherent scheme, the linear noncoherent

scheme, and the state-of-the-art MAP [11] equipped with the ML channel estimation [10] are

illustrated in Fig. 7 and Fig. 8, where Fig. 7 gives the comparison with various SNR, and

Fig. 8 shows the results affected by the intensities of ISI. The coherent MAP with the perfect

knowledge of the CSI is provided as benchmark. Here, the SNR for this simulation is defined as

the ratio of the power of the signal to the variance of the noise. Given the Poisson distribution

of the observation yi in Eq. (3), the power of the signal can be measured via the average of

si =
∑k

l=k−L+1Q · hi−(l−1)M · αl, i.e., E(si), and the variance of noise for Poisson distribution

is E(si) + ε̄int. As such, the SNR is expressed as: [26]

SNR =
E(si)

2

E(si) + ε̄int
. (39)

1) BER versus SNR: The BER performance with respect to the SNR is shown in Fig. 7, in

which Fig. 7-(a) considers the case with signal-independent noise, and Fig. 7-(b) presents the

case with signal-dependent noise. It is intuitive that the BERs of all the schemes are affected by

the SNR. For instance, the BER of the MAP is deteriorated from 8× 10−3 to 0.47, as the SNR
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Fig. 8. BER comparisons among different schemes versus the changes of the symbol interval Tb that reflect the intensities ISI.

(a) illustrates the scenario with signal independent noise. (b) gives the case with signal dependent noise. It is observed that in

both cases, the proposed HD non-coherent scheme outperforms the MAP with unknown CSI and linear non-coherent method.

decreases from 20dB to −5dB. Also, our proposed two non-coherent schemes perform badly in

the region of the low intensities of the SNR.

Then, it is seen that our proposed HD non-coherent scheme is also suitable for the case with

the signal-dependent noise. In Fig. 7-(b), the BER of the proposed scheme with signal-dependent

noise decreases from the 0.2 to 5× 10−4 when the SNR increases from −5dB to 10dB, which

is similar with the performance provided in the case of signal-independent noise in Fig. 7-(a).

More importantly, we can observe that our proposed HD non-coherent scheme outperforms

the state-of-the-art MAP and the linear noncoherent method. For instance, the BER of our HD

non-coherent scheme is 6 × 10−4, as the SNR=10dB, which is smaller than that of the MAP

scheme (i.e., 0.1) and the linear scheme (i.e., 8× 10−2). The reason can be summarized as two

aspects. 1) Our proposed scheme relies on the high-dimensional construction of the three feature

metrics, rather than their linear combination, capable of providing a larger SNR, and therefore

can obtain a better performance given the Eq. (24). 2) Under the assumption of the unknown

channel models, the performance of the state-of-the-art MAP scheme is restricted by the accuracy

of CSI estimation for ISI compensation, which, if has errors, will subsequently deteriorate the

computation of the likelihood PDF, therefore leading to erroneous results for signal detection.

By contrast, our proposed HD non-coherent scheme uses metric that can inherently counteract
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the ISI via the exploration of the transient features, and thereby capable of reaching a remarkable

performance in the blind detection scenarios.

2) BER versus ISI: The performance of the BER corresponding to the ISI is provided in Fig.

8, in which Fig. 8-(a) considers the case with signal-independent noise, and Fig. 8-(b) shows the

case with signal-dependent noise. It is shown that the intensities of the ISI influence the BERs

of these schemes. For example, with the decrease of the symbol interval Tb from 1.1 × 10−3s

to 3× 10−4, the ISI becomes stronger, and therefore deteriorates the BER of the proposed HD

non-coherent scheme from 9× 10−4 to 8× 10−2.

Then, we can observe from Fig. 8-(b) that the detection performance of the proposed HD

non-coherent scheme is also well-behaved for the case with signal-dependent noise. Similar to

the BER in the case of signal-independet noise in Fig. 8-(a), the BER of the propose scheme

reduces from 8×10−2 to 9×10−4, as the symbol interval Tb grows from 3×10−4 to 11×10−4.

When we make a comparison among the three schemes, we can see that the proposed HD

non-coherent scheme performs better than the state-of-the-art MAP and the linear non-coherent

scheme. For instance, the BER of our proposed HD non-coherent scheme varies from 8× 10−2

to 9× 10−4 as the Tb grows from 3× 10−4 to 1.1× 10−3, smaller than the values of the linear

scheme that ranges from 1.1 × 10−1 to 10−2, not to mention the poor performances derived

from the MAP method. This great advantage of our proposed scheme is attributed to following

perspectives. As we have proved in the Eq. (24), the HD non-coherent has a lower BER as

opposed to the scheme with lower dimensional metric. Besides, the advantage of blind detection

of our scheme makes it possible to approximate the likelihood density and thereby leads to a

more reliable detection results, as opposed to the MAP in [11] that will be harmed under the

unknown CSI.

VI. CONCLUSION

In most sequential molecular signal detection scenarios, information recovery without explicit

channel models is challenging. Current research challenges lie in how to deal with the background

noise the ISI caused by the long-tail nature of the channel response and its dynamics. In this

paper, we extend and improve our linear metric combining non-coherent detection method by

designing a high-dimensional metric and proposing the Parzen-PNN implementation. We first

construct the high-dimensional metric by re-designing the sub-metrics to be robust against various

ISI intensities. Then, we compute the theoretical BER bound of the high-dimensional metric and
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prove to have a lower BER as opposed to the linear scheme. By considering the blind detection

scenarios, we adopt the Parzen-PNN implementation to estimate the likelihood PDF and then

detect the information bits. In comparison with the state-of-the-art MAP and previous linear

schemes, our newly proposed high-dimensional non-coherent scheme gains an average of 10dB

in SNR given the fixed BER as 10−4. This generalizable technique provides promising pathways

for future research in adverse molecular or biological channels.
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