418 research outputs found
Hydraulic Behaviour of He II in Stratified Counter-Current Two-Phase Flow
Future large devices using superconducting magnets or RF cavities (e.g. LHC or TESLA) need He II two-phase flow for cooling. The research carried out into counter-current superfluid two-phase flow was the continuation of work on co-current flow and benefited from all the knowledge acquired both experimentally and theoretically. Experiments were conducted on two different pipe diameters (40 and 65 m m I.D. tube) for slopes ranging between 0 and 2%, and for temperatures ranging between 1.8 and 2 K. This paper introduces the theoretical model, describes the tests, and provides a critical review of the results obtained in He II counter current two-phase flow
Closed-Loop Targeted Memory Reactivation during Sleep Improves Spatial Navigation
Sounds associated with newly learned information that are replayed during non-rapid eye movement (NREM) sleep can improve recall in simple tasks. The mechanism for this improvement is presumed to be reactivation of the newly learned memory during sleep when consolidation takes place. We have developed an EEG-based closed-loop system to precisely deliver sensory stimulation at the time of down-state to up-state transitions during NREM sleep. Here, we demonstrate that applying this technology to participants performing a realistic navigation task in virtual reality results in a significant improvement in navigation efficiency after sleep that is accompanied by increases in the spectral power especially in the fast (12\u201315 Hz) sleep spindle band. Our results show promise for the application of sleep-based interventions to drive improvement in real-world tasks
Liquid Hydrogen Target Experience at SLAC
Liquid hydrogen targets have played a vital role in the physics program at SLAC for the past 40 years. These targets have ranged from small "beer can" targets to the 1.5 m long E158 target that was capable of absorbing up to 800 W without any significant density changes. Successful use of these targets has required the development of thin-wall designs, liquid hydrogen pumps, remote positioning and alignment systems, safety systems, control and data acquisition systems, cryogenic cooling circuits and heat exchangers. Detailed operating procedures have been created to ensure safety and operational reliability.This paper surveys the evolution of liquid hydrogen targets at SLAC and discusses advances in several of the enabling technologies that made these targets possible
Thorium isotopes tracing the iron cycle at the Hawaii Ocean Time-series Station ALOHA
Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 169 (2015): 1-16, doi:10.1016/j.gca.2015.07.019.The role of iron as a limiting micronutrient motivates an effort to understand the supply and
removal of lithogenic trace metals in the ocean. The long-lived thorium isotopes (232 Th and
230 Th) in seawater can be used to quantify the input of lithogenic metals attributable to the partial
dissolution of aerosol dust. Thus, Th can help in disentangling the Fe cycle by providing an
estimate of its ultimate supply and turnover rate. Here we present time-series (1994-2014) data
on thorium isotopes and iron concentrations in seawater from the Hawaii Ocean Time-series
Station ALOHA. By comparing Th-based dissolved Fe fluxes with measured dissolved Fe
inventories, we derive Fe residence times of 6-12 months for the surface ocean. Therefore, Fe
inventories in the surface ocean are sensitive to seasonal changes in dust input. Ultrafiltration
results further reveal that Th has a much lower colloidal content than Fe does, despite a common
source. On this basis, we suggest Fe colloids may be predominantly organic in composition, at
least at Station ALOHA. In the deep ocean (>2 km), Fe approaches a solubility limit while Th,
surprisingly, is continually leached from lithogenic particles. This distinction has implications
for the relevance of Fe ligand availability in the deep ocean, but also suggests Th is not a good
tracer for Fe in deep waters. While uncovering divergent behavior of these elements in the water
column, this study finds that dissolved Th flux is a suitable proxy for the supply of Fe from dust
in the remote surface ocean.We acknowledge funding from the W.O. Crosby Postdoctoral Fellowship to CTH and the
National Science Foundation through C-MORE, NSF-OIA EF-0424599 to EAB, and NSF-DMR
Author Posting
The cryogenic system for the SLAC E158 experiment
E158 is a fixed target experiment at SLAC in which high energy (up to 48 GeV) polarized electrons are scattered off the unpolarized electrons in a 1.5 m long liquid hydrogen target. The total volume of liquid hydrogen in the system is 47.1. The beam can deposit as much as 700 W into the liquid hydrogen. Among the requirements for the system are: that density fluctuations in the liquid hydrogen be kept to a minimum, that the target can be moved out of the beam line while cold and replaced to within 2 mm and that the target survive lifetime radiation doses of up to 1×106 Gy. The cryogenic system for the experiment consists of the target itself, the cryostat containing the target, a refurbished CTI 4000 refrigerator providing more than 1 kW of cooling at 20 K and associated transfer lines and valve boxes. This paper discusses the requirements, design, construction, testing and operation of the cryogenic system. The unique features of the design associated with hydrogen safety and the high radiation field in which the target resides are also covered
Thorium isotopes tracing the iron cycle at the Hawaii Ocean Time-series Station ALOHA
The role of iron as a limiting micronutrient motivates an effort to understand the supply and removal of lithogenic trace metals in the ocean. The long-lived thorium isotopes (²³²Th and ²³⁰Th) in seawater can be used to quantify the input of lithogenic metals attributable to the partial dissolution of aerosol dust. Thus, Th can help in disentangling the Fe cycle by providing an estimate of its ultimate supply and turnover rate. Here we present time-series (1994–2014) data on thorium isotopes and iron concentrations in seawater from the Hawaii Ocean Time-series Station ALOHA. By comparing Th-based dissolved Fe fluxes with measured dissolved Fe inventories, we derive Fe residence times of 6–12 months for the surface ocean. Therefore, Fe inventories in the surface ocean are sensitive to seasonal changes in dust input. Ultrafiltration results further reveal that Th has a much lower colloidal content than Fe does, despite a common source. On this basis, we suggest Fe colloids may be predominantly organic in composition, at least at Station ALOHA. In the deep ocean (>2 km), Fe approaches a solubility limit while Th, surprisingly, is continually leached from lithogenic particles. This distinction has implications for the relevance of Fe ligand availability in the deep ocean, but also suggests Th is not a good tracer for Fe in deep waters. While uncovering divergent behavior of these elements in the water column, this study finds that dissolved Th flux is a suitable proxy for the supply of Fe from dust in the remote surface ocean.National Science Foundation (U.S.) (Grant NS-OIA E-0424599
Recommended from our members
Power tests of a string of magnets comprising a full cell of the Superconducting Super Collider
In this paper we describe the operation and testing of a string of magnets comprising a full cell of the Superconducting Super Collider (SSC). The full cell configuration composed of ten dipoles, two quadrupoles, and three spool pieces is the longest SSC magnet string ever tested. Although the tests of the full cell were undertaken after the SSC project was marked for termination, their completion was deemed necessary and useful to future efforts at other accelerator laboratories utilizing Superconducting magnets. The focus of this work is on the electrical and cryogenic performance of the string components and the quench protection system with an emphasis on solving some of the questions concerning electrical performance raised during the previous two experimental runs involving a half cell configuration
Precision Measurement of the Weak Mixing Angle in Moller Scattering
We report on a precision measurement of the parity-violating asymmetry in
fixed target electron-electron (Moller) scattering: A_PV = -131 +/- 14 (stat.)
+/- 10 (syst.) parts per billion, leading to the determination of the weak
mixing angle \sin^2\theta_W^eff = 0.2397 +/- 0.0010 (stat.) +/- 0.0008 (syst.),
evaluated at Q^2 = 0.026 GeV^2. Combining this result with the measurements of
\sin^2\theta_W^eff at the Z^0 pole, the running of the weak mixing angle is
observed with over 6 sigma significance. The measurement sets constraints on
new physics effects at the TeV scale.Comment: 4 pages, 2 postscript figues, submitted to Physical Review Letter
- …
