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Abstract 11 

The role of iron as a limiting micronutrient motivates an effort to understand the supply and 12 

removal of lithogenic trace metals in the ocean. The long-lived thorium isotopes (232Th and 13 

230Th) in seawater can be used to quantify the input of lithogenic metals attributable to the partial 14 

dissolution of aerosol dust. Thus, Th can help in disentangling the Fe cycle by providing an 15 

estimate of its ultimate supply and turnover rate. Here we present time-series (1994-2014) data 16 

on thorium isotopes and iron concentrations in seawater from the Hawaii Ocean Time-series 17 

station ALOHA. By comparing Th-based dissolved Fe fluxes with measured dissolved Fe 18 

inventories, we derive Fe residence times of 6-12 months for the surface ocean. Therefore, Fe 19 

inventories in the surface ocean are sensitive to seasonal changes in dust input. Ultrafiltration 20 

results also reveal that Th has a much lower colloidal content than Fe, implicating a predominant 21 

role for sub-micron organic ligands specific to Fe, or possibly inorganic Fe colloids. In the deep 22 

ocean, Fe approaches a solubility limit while Th, surprisingly, is continually leached from 23 

lithogenic particles. This distinction in solubility suggests Th is not a good tracer for Fe in the 24 

deep (>2 km) ocean. While uncovering divergent behavior of these elements in the water 25 

column, this study finds that dissolved Th flux is a suitable proxy for the supply of Fe from dust 26 

in the remote surface ocean. 27 
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1. Introduction 28 

Determination of the supplies of iron to the ocean is relevant to understanding Earth’s 29 

climate and the ocean’s ecology. Ocean storage of carbon dioxide is mediated by iron supply in 30 

large areas of the ocean where Fe is a limiting resource, both today (Moore et al., 2013) and 31 

during the ice ages (Martínez-García et al., 2014). Additionally, the marine distribution of 32 

diazotrophic phytoplankton that modulate the nitrogen cycle may be determined by Fe supply 33 

rates (Ward et al., 2013). Atmospheric dust is arguably the major source of Fe to the euphotic 34 

zone (Boyd et al., 2010; Conway and John, 2014; Jickells et al., 2005; Tagliabue et al., 2014). 35 

Debate on the sources of marine Fe ensues largely because the techniques to estimate the supply 36 

rate of Fe from dust in particular, or Fe residence times in general, are only beginning to be 37 

developed.  38 

In this study, we assess the utility of thorium isotopes in seawater to provide rate 39 

information on the Fe cycle. In addition to producing a measure of total dust flux to the ocean 40 

(Deng et al., 2014; Hsieh et al., 2011), by pairing 232Th, sourced from dust, with radiogenic 230Th 41 

(or 234Th) that provides a timescale of thorium flux, one can make quantitative estimates of the 42 

trace metals released by dust dissolution (Hayes et al., 2013a). Our study site is the Hawaii 43 

Ocean Time-series station ALOHA (22° 45’ N, 158° W) (Church et al., 2013; Karl and Lukas, 44 

1996) in the subtropical North Pacific, where Asian dust is deposited in spring (Boyle et al., 45 

2005; Hyslop et al., 2013; Prospero et al., 2003). Presenting time-series data spanning 20 yrs 46 

(1994-2014), we demonstrate that the behaviors of Fe and Th in seawater are consistent with a 47 

variable dust source to the surface ocean. Thorium-based fluxes indicate that the residence time 48 

of dissolved Fe in the upper 125 m of the water column is less than one year. In the sub-surface 49 
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ocean (>250 m), the thorium and iron cycles begin to diverge considerably. These divergences 50 

reveal new insights into the marine geochemistry of these elements. 51 

2. Background 52 

2.1 Finding the timescale: thorium removal 53 

The rate information on trace metal cycling that we seek is obtained by exploiting the 54 

natural radioactive disequilibrium between insoluble 230Th and its soluble parent 234U in 55 

seawater. The oceanic distribution of 234U (half-life 245,620 yrs (Cheng et al., 2013)) is 56 

homogeneous within a few parts per thousand, as 238U concentrations vary only with salinity 57 

(Owens et al., 2011) and 234U/238U ratios vary by less than 1 per mil (Andersen et al., 2010). 58 

Therefore, the decay of 234U produces 230Th at a known rate everywhere in the ocean. Due to its 59 

insolubility, thorium adsorbs onto sinking particulate matter, a process called scavenging, on a 60 

timescale of years, much faster than 230Th decay (half-life 75,584 yrs (Cheng et al., 2013)).  61 

Thus by comparing the amount of 230Th that remains in seawater to the amount produced 62 

by U decay, one can calculate a removal timescale (Eq. 1, Fig. 1), or residence time (τ), of 63 

thorium in seawater. This technique is analogous to that used with a more commonly used flux 64 

tracer, the shorter-lived 234Th (half-life 24.1 days). By the same principles, using its production 65 

rate from parent isotope 238U, 234Th inventories can also be used to determine the scavenging rate 66 

of Th in seawater (Buesseler et al., 1992; Coale and Bruland, 1985).  67 
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     Eq. 1 68 

To meet the requirements of a steady-state assumption between source and removal 69 

terms, we calculate thorium residence times in an integrated sense, from the surface to a 70 

particular depth. Thus as one integrates deeper into the water column, the 230Th inventories 71 

reflect longer timescales of removal. Residence times calculated in this way also neglect 72 
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dispersal fluxes by ocean circulation. Lateral gradients in oceanic 230Th concentrations are 73 

generally small  (Hayes et al., 2014), while large vertical gradients may make vertical fluxes 74 

significant, for instance due to upwelling (Luo et al., 1995). 75 

2.2 Finding the source: lithogenic metal fluxes 76 

The dominant isotope of seawater thorium is primordial and long-lived (half-life 14.1 x 77 

109 yrs) 232Th. It is added to the ocean only through the partial dissolution of continental 78 

material, which in the context of station ALOHA we consider to be primarily aerosol dust. As 79 

scavenging tendencies are characteristic of all isotopes of an element, once in the water column, 80 

232Th undergoes scavenging removal (Fig. 1) assumedly at the same rate, i.e. with the same 81 

residence time, as 230Th (or 234Th). Assuming a steady-state for Th concentrations, with 82 

knowledge of the Th residence time, derived from 230Th, one can calculate the flux of dust-83 

derived 232Th necessary to support the observed 232Th inventory (Eq. 2). As in calculating 84 

thorium residence times, the dissolved 232Th flux derived is reflective of the integrated depth 85 

zone, rather than at a particular depth. More details on 232Th flux calculations are reported by 86 

Hayes et al. (2013a). 87 
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   Eq. 2 88 

In comparison to the relative simplicity of the supply and removal terms in the thorium 89 

cycle, seawater iron cycling has many more terms to consider. These include biological uptake, 90 

remineralization, redox chemistry, anthropogenic or hydrothermal sources, in addition to supply 91 

by dust and removal by scavenging (Fig. 1).  Scavenging of Fe also occurs but at a different rate 92 

than that of Th. The utility of this element pair is their common source from dust. We propose 93 

using dissolved 232Th flux as a proxy for the Fe released during dust dissolution. This can be 94 
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done with knowledge of the Fe/Th ratio in the dust and the relative fractional solubility of the 95 

two elements (SFe/Th, Eq. 3). 96 

Dust-dissolved Fe flux = dissolved 232Th flux × (Fe/Th)dust × SFe/Th                      Eq. 3 97 

By weight, the Asian desert dust which undergoes long-range transport over the North 98 

Pacific contains 232Th at 14.3 ± 0.8 ppm, based on fine grained (<8 µm) source materials 99 

(McGee, 2009; Serno et al., 2014), and Fe at 3.8 ± 0.4 %, based on a literature compilation by 100 

Mahowald et al. (2005). Therefore, we assume the Fe/Th ratio in dust at station ALOHA of 2660 101 

± 320 g/g or 11,040 ± 1450 mol/mol. These ratios are close to the average for the upper 102 

continental crust of Fe/Th = 3271 g/g = 13,553 mol/mol (Taylor and McLennan, 1995).   103 

The relative fractional solubility of Fe and Th in dust is currently unconstrained. Hayes et 104 

al. (2013a) assumed SFe/Th = 1 as a starting point, based solely on the similarly insoluble nature 105 

of these two elements in seawater. While much more work is needed to constrain this parameter, 106 

here we continue to assume SFe/Th = 1, and our observations of the time-series variability in the 107 

seawater Fe/232Th ratio (section 4.4) support this assumption.  108 

2.3 Iron residence times 109 

We cannot rule out significant marine Fe sources by anthropogenic (e.g., derived from 110 

fossil fuel combustion) aerosols, continental margin sediments, or deep-sea hydrothermal vents. 111 

We can, however, entertain the thought that if dust were the only Fe source to the water column, 112 

the comparison between measured dissolved Fe inventories to the source (dust-dissolved Fe flux) 113 

would produce a measure of the turnover rate or residence time of dissolved Fe in seawater (Eq. 114 

4). This residence time again represents the residence time within the integrated water column. 115 

Additional sources of Fe, such as combustion aerosols or hydrothermal fluids, would cause the 116 
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dust-based Fe residence time to be an overestimate. Relevant to iron cycling, this residence time 117 

provides a rough timescale over which one can expect Fe concentration to vary as a result of 118 

variation in sources, such as springtime Asian dust events (Boyle et al., 2005). 119 

Dissolved Fe residence time = Fe inventory ÷ dust-dissolved Fe flux  Eq. 4 120 

3. Materials and Methods 121 
 122 

3.1 Sample collection during 2012-2014 123 
 124 
Samples were collected on several cruises on the R/V Kilo Moana, led by the Center for 125 

Microbial Oceanography: Research and Education (C-MORE), to station ALOHA in July-126 

September 2012 (HOE-DYLAN), May-June 2013 (HOE-PhoR-I), September 2013 (HOE-PhoR-127 

II) and March 2014 (HOE-BOE-I). Depth profiles for 230Th/232Th analysis were collected from 128 

the ship’s Niskin bottle rosette, filtered with a 0.45 µm Acropak cartridge filter, and acidified to 129 

pH 1.8 with Savillex-distilled 6 M HCl.  130 

Filtered surface seawater (0.4 µm) was collected for 232Th (which requires smaller 131 

volumes than for 230Th), as well as for dissolved Fe, using the trace-metal clean MITESS 132 

sampler (Bell et al., 2002) at near daily time intervals on the 2012-2013 C-MORE cruises. 133 

MITESS collection methods, including “Vane” sampling for Fe depth profiles, on the HOE 134 

campaigns are discussed fully by Fitzsimmons et al. (submitted). Within 3 hours of collection, 135 

the seawater was filtered using 0.4 µm polycarbonate track etch filters (PCTE, Whatman). 136 

Particulate samples were immediately frozen, and dissolved filtrates were acidified to pH 2 with 137 

trace metal clean HCl. The filters used for filtering MITESS water were analyzed for particulate 138 

Fe and 232Th (representing on average 0.7 liters of seawater).  139 

On HOE-PhoR-II, cross flow filtration was performed to assess colloidal 232Th/230Th 140 

using protocols developed to study colloidal Fe (Fitzsimmons and Boyle, 2014a). Seawater was 141 
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pre-filtered at 0.45 µm and, within 1-2 hours, pumped over a Millipore Pellicon XL filter made 142 

of regenerated cellulose with a nominal molecular weight cutoff of 10 kDa, roughly equivalent to 143 

an effective pore size of 10 nanometers. Both permeate and retentate fractions were analyzed to 144 

determine any loss of Th by adsorption, which turned out to be minimal (88-100% dissolved Th 145 

recovery).  146 

3.2 Hawaii Ocean Time-series (HOT) seawater 147 

Seawater samples, typically 0.5 liter size, have been collected during the HOT program 148 

for trace metal analysis at MIT periodically since 1997. Most of these samples were collected as 149 

unfiltered water using the MITESS sampler (Bell et al., 2002) and subsequently preserved by 150 

acidification to pH 2 with HCl. Further sampling details are given by Boyle et al. (2005).  We 151 

also make use of literature seawater 232Th/230Th data, collected at station ALOHA in September 152 

1994 (HOT-57), reported by Roy-Barman et al. (1996). 153 

3.3 Thorium and iron analyses 154 

Dissolved 230Th concentrations at station ALOHA are as low as 10-18 moles per kilogram 155 

seawater (10-18 mol 230Th = 0.1746 µBq). Therefore, for measurement by inductively-coupled 156 

plasma mass spectrometry (ICP-MS), 4-5 liter water samples are required. Thorium 157 

concentrations were determined by isotope dilution by spiking with 229Th (not present in natural 158 

seawater). Sample preparation (pre-concentration, acid digestion, and chromatographic 159 

purification) was performed using published methods (Anderson et al., 2012; Auro et al., 2012). 160 

A portion of the 230Th samples were prepared and analyzed at the Lamont-Doherty Earth 161 

Observatory (L-DEO), using an Element XR single-collector ICP-MS. The remaining 230Th 162 

samples were prepared at the Massachusetts Institute of Technology (MIT) and analyzed using a 163 
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Neptune Plus multi-collector ICP-MS at Brown University. Th-232 was also analyzed in samples 164 

prepared for 230Th. 165 

Analysis of 232Th, at 10-15 mol or femtomoles per kg seawater, required smaller samples 166 

(200-800 mL) and was measured on archive HOT and HOE samples for which sample volume 167 

did not allow 230Th determination. While not as prone to contamination as some other trace 168 

elements, clean lab techniques were required to produce blanks that were consistent and low 169 

enough to allow detection of the relatively small sample size of ~20-40 femtomoles 232Th. 170 

Therefore, modifications of the cited procedures for Th analysis (Anderson et al., 2012; Auro et 171 

al., 2012) were made. Instead of co-precipitation with added Fe, pre-concentration of 232Th was 172 

achieved using magnesium hydroxide co-precipitation, such as that described for Pb by Reuer et 173 

al. (2003). Thorium was purified using a smaller amount (100 µl rather than 1 ml) of anion-174 

exchange resin (AG1-X8) on columns fashioned from Teflon shrink-tubing. Samples were 175 

loaded onto AG1-X8 resin in 8 M HNO3 and Th was eluted with 6 M HCl (instead of 12 M HCl, 176 

to reduce acid blank), following Edwards et al. (1987). Blank determinations were made on 125 177 

mL aliquots of acidified seawater samples whose 232Th content had been determined during 178 

previous 230Th analysis. The mean procedural blank (n = 6) was 3.5 ± 1.6 fmol 232Th, resulting in 179 

a detection limit of 4.8 fmol 232Th. Samples for seawater 232Th were prepared and analyzed at 180 

MIT, using a Micromass IsoProbe multi-collector ICP-MS.    181 

In this study, we refer to measured trace metal concentrations as dissolved (filtered at 0.4 182 

or 0.45 µm), particulate (>0.4 µm), or total (acidified unfiltered water). The “total” 183 

concentrations in this sense are sometimes referred to as “total dissolvable”, allowing for the 184 

possibility that some forms of Th are not preserved by acidification or collected with co-185 

precipitation. Since our goal in interpreting seawater 230Th concentrations is to determine 186 
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scavenging rates based on uranium decay, we made small (0-10%) corrections for the dissolved 187 

230Th released from dust (or lithogenic material in general). This correction is based on measured 188 

dissolved 232Th and a lithogenic 230Th/232Th mole ratio of 4 x 10-6 (Roy-Barman et al., 2009). 189 

The corrected dissolved 230Th values are denoted as “xs”.  190 

Particulate 232Th and particulate Fe, were analyzed at Florida State University by total 191 

digestion of the filter samples and subsequent analysis by ICP-MS, using slightly modified 192 

versions of published protocols (Ho et al., 2011; Morton et al., 2013; Upadhyay et al., 2009). In 193 

brief, samples were microwaved (CEM MARS Xpress) for 40 minutes at 180°C with HNO3 and 194 

H2O2 (to digest the organic and less refractory biogenic and authigenic components) and HF (to 195 

digest the more refractory lithogenic components).  The detection limit (based on 3 standard 196 

deviations of the digested acid blanks) for particulate 232Th was 8 fmol/L (n=19) and the 197 

particulate Fe detection limit was 0.2 nmol/L (n=21). Dissolved Fe was measured by isotope 198 

dilution after pre-concentration onto nitrilotriacetate resin on the Micromass IsoProbe ICP-MS at 199 

MIT (Lee et al., 2011). Further details on Fe analyses are discussed by Fitzsimmons et al. 200 

(submitted).  201 

Data presented in this study can be accessed in the Supplemental Material online. 202 

4. Results and Discussion 203 
 204 

4.1 230Th-232Th depth profiles to 1.5 km 205 
 206 

We focus first on the 2012-2013 thorium isotope depth profiles in the upper 1.5 km of the 207 

water column for a sense of the type of data used to calculate thorium fluxes (Fig. 2).  High 208 

resolution depth profiles were analyzed in late July 2012, early June 2013 and late September 209 

2013. The mixed layer depths during these sampling casts (based on 0.125 kg/m3 density change) 210 
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were 54, 33 and 53 m, respectively, and below 100 m these profiles displayed little 211 

distinguishing hydrography (Figs. 2C, 2D, 2E).  212 

For dissolved 232Th (Fig. 2A), there were increased concentrations near the surface, 213 

minimum concentrations at the depth of maximum chlorophyll concentration (the DCM, ~120-214 

140 m), and a relatively constant local concentration maximum at 500-600 m depth. At 215 

intermediate depths (900-1200 m), each profile exhibited smooth variations in concentration but 216 

concentrations at the different sampling dates vary by up to 30%.  217 

The surface 232Th maxima are consistent with aerosol dust as the major source of 232Th to 218 

station ALOHA, as recognized by Roy-Barman et al. (1996). An interesting feature of these 219 

high-depth resolution measurements is that the surface (5 m) 232Th concentration was lower than 220 

that in the core of the mixed layer (25 m depth) at these three sampling times. This is perhaps 221 

related to small-scale scavenging and export dynamics, or particle cycling in general.   222 

The coincidence of the subsurface chlorophyll maximum and the minimum in 232Th is 223 

apparently a universal feature for lithogenic trace elements such as Al, Ti and Fe (Dammshäuser 224 

et al., 2013; Fitzsimmons and Boyle, 2014b; Fitzsimmons et al., in press; Ohnemus and Lam, in 225 

press). This was also true for dissolved and particulate Fe at Station ALOHA during this study 226 

(Fitzsimmons et al., submitted). Increased particle aggregation efficiency, through the formation 227 

of fecal pellets, may more efficiently scavenge dissolved 232Th from this depth.  228 

Scavenged 232Th may be partially released through remineralization of particles in 229 

mesopelagic depths (300-500 m). Thus remineralization may be responsible for some of the 230 

subsurface 232Th maxima at 400-600 m depth. In support of this view, this depth range coincides 231 

with a rapid increase in phosphate concentration and apparent oxygen utilization, as inferred 232 

from HOT climatology (http://hahana.soest.hawaii.edu/hot/trends/trends.html). On the other 233 
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hand, the attenuation of particulate organic carbon at station ALOHA is most intense at 234 

shallower depths, between 100 and 200 m (Bishop and Wood, 2008).  235 

The dominant basalts of the Hawaiian Islands (tholeiitic) are low in Th content, 0.8 ± 0.4 236 

ppm, according to available data in PetDB (www.earthchem.org/petdb) (Lehnert et al., 2000). 237 

Nonetheless, with our seawater observations, we cannot fully rule out lateral input of Th from 238 

the Hawaiian Islands. For instance, dissolved Mn concentrations reach a maximum near 800 m 239 

depth at station ALOHA (Boyle et al., 2005) that may reflect a coastal source of metals. 240 

The variability in 232Th concentration at intermediate depths (900-1400 m) could be due 241 

to the effect of hydrothermal activity at the nearby Loihi seamount. The iron oxide particles 242 

associated with hydrothermal plumes strongly scavenge Th, and depleted deep-sea Th 243 

concentrations have been observed up to 1400 km away from a vent site in the Atlantic (Hayes et 244 

al. 2014). We note however, that while variability in 232Th could suggest hydrothermal 245 

scavenging, intriguingly, this effect is apparently weak enough to not significantly perturb the 246 

near-linear 230Th profiles (Fig. 2). Time-variability in the influence of the Loihi hydrothermal 247 

system on trace metals at ALOHA is discussed more fully by Fitzsimmons et al. (submitted).   248 

The 230Th profiles also displayed interesting temporal variations. The theory of reversible 249 

scavenging contends that a steady-state is achieved between thorium adsorption and desorption 250 

on uniform particles that settle at a constant rate (Bacon and Anderson, 1982). Under these 251 

assumptions, one expects 230Th concentrations to increase linearly with depth with a boundary 252 

condition of zero concentration at the surface. While the observed depth profiles are essentially 253 

linear (Fig. 2B), it appears that mixing at the surface homogenizes 230Th concentrations to some 254 

depth. Interestingly, the layer of relatively homogeneous 230Th extends deeper than the density-255 

defined mixed layer (30-50 m), down to the deep chlorophyll maximum (Fig. 2).  This 256 
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phenomenon is worthy of future time-series study. Potentially a remnant of deep winter mixed 257 

layers (< 100 m), the homogeneous surface  230Th layer could also represent some combination 258 

of vertical mixing and enhanced scavenging related to export of organic matter from the euphotic 259 

zone.  260 

Another significant observation is that while the surface 230Th concentrations from June 261 

and September 2013 were nearly identical (1.2 µBq/kg), the surface 230Th concentrations from 262 

July 2012 were about a factor of 2 lower (0.6 µBq/kg). This implies a relatively rapid change in 263 

scavenging and/or export production. Future time-series studies are warranted to further assess 264 

the short-term (daily-monthly) variability in euphotic zone 230Th concentrations and how closely 265 

these changes can be correlated with organic matter export. In the next section, we assess what 266 

changes in the removal timescale are implied by these results.  267 

4.2 Surface thorium residence times 268 
 269 

Residence times of dissolved 230Th as described in section 2.1 using the 2012-2014 270 

results are presented in Figure 3.  In this assessment, we integrate production due to 234U decay 271 

(based on salinity) and the measured 230Th inventory to 150 m depth. This allows comparison to 272 

Th residence times calculated on the basis of 234Th:238U disequilibrium established by previous 273 

work at station ALOHA, during April 1999-March 2000 (Benitez-Nelson et al., 2001) and June-274 

July 2008 (Buesseler et al., 2009). The 234Th results differ slightly from the approach used here 275 

for dissolved 230Th since the 234Th fluxes are calculated using unfiltered seawater. Since 276 

adsorbed 230Th concentrations are on the order of ~10-20% of total 230Th (Roy-Barman et al., 277 

1996), residence times based on total 234Th can be expected to be up to 10-20% lower than those 278 

based on the dissolved phase only.  279 
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We also assessed the influence of vertical mixing on surface 230Th inventories, which 280 

could influence the derived residence time. Assuming a vertical mixing coefficient (Kv) of 10-5 281 

m2/s (Charette et al., 2013), using a second-order polynomial regression of the 230Th depth 282 

profiles (above 250 m), we can calculate the vertical mixing rate of 230Th, as Kv × d2Th/dz2. The 283 

results indicate that vertical mixing adds 230Th to surface water at a rate of less than 5% of 284 

production due to 234U decay. Therefore we can assume that vertical mixing does not 285 

significantly affect the 230Th residence time estimates at Station ALOHA. 286 

Nearly all of the thorium residence time estimates fall in the range of 1 to 3 years with no 287 

significant seasonal cycle (Fig. 3). In the HOT climatology, organic carbon export at 150 m is 288 

highest in May-August. While export seasonality is relatively weak in this oligotrophic, 289 

subtropical location (Church et al., 2013), long-term monitoring has revealed episodic export 290 

events related to diatom blooms and symbiotic cyanobacteria, typically in late July and early 291 

August (Karl et al., 2012).   292 

The concept of “residence time” used here is based on a steady-state assumption for 293 

sources and sinks. Therefore with a residence time of ~2 years, one would not expect significant 294 

variation in the removal timescale over a period of months. However, the range in observed Th 295 

residence times for Station ALOHA indicates that this steady-state assumption is not quite 296 

correct. More precisely, the steady-state for scavenging removal of Th appears to hold within a 297 

factor of 2-3. The range in removal timescales observed based on 230Th is similar to that based on 298 

234Th. Thus, it seems the rate of thorium scavenging can change dynamically at Station ALOHA 299 

possibly related to export pulses, but the data are consistent with a long-term average thorium 300 

residence time of 2 ± 1 years in the upper 150 m.  301 

4.3 Surface 232Th concentrations 302 
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With relatively good control on the removal timescale of thorium, we turn to observed 303 

variability in surface 232Th concentrations. Barring significant fluxes due to lateral circulation, 304 

this variability represents the balance between removal by scavenging and input by dust. Smaller 305 

volume requirements for analysis (<1 liter) allowed us to investigate 232Th from daily, monthly 306 

and decadal timescales.  307 

Collected during a series of cruises in summer 2012 (HOE-DYLAN), daily-scale samples 308 

of 250 mL were analyzed for dissolved and particulate 232Th. Sample size required combining 309 

the samples from 2-4 days for dissolved 232Th, contributing to some degree of smoothing. 310 

Dissolved concentrations ranged from 45-90 fmol/kg (Fig. 4C).  Particulate 232Th, although 311 

measured at a higher, daily resolution, had a higher range of variability, from 10-290 fmol/kg. Of 312 

the total seawater 232Th (dissolved + particulate) during HOE-DYLAN, on average 42% was in 313 

the particulate phase (range 26-66%). This fraction particulate is higher than that for 230Th 314 

(~15%, Roy-Barman et al., 1996) since particulate 232Th represents both adsorbed Th and 315 

structural Th in mineral dust.    316 

The decadal time-series observations (1994-2014) of total 232Th (Fig. 4A) exhibit a range 317 

in concentration (~50-300 fmol/kg) that is consistent with the higher frequency observations of 318 

particulate Th in 2012-2013. Since most of the data fall within the range of 50-150 fmol/kg, we 319 

are not fully confident in the five observations of elevated concentrations (150-300 fmol/kg) 320 

observed in 1994, 1998, and 1999 samples. In particular, the 1998 and 1999 samples were 321 

collected using a moored, rather than ship-based, MITESS sampler in which bottles were filled 322 

with 1 M HCl prior to filling with seawater. Mooring-collected water at times had higher Th 323 

concentrations than ship-based sampling (Fig. 4) and thus the possibility of contamination during 324 

sampling, sample storage, or sample analysis cannot be fully discounted. In fact, the 1994 results 325 
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from Roy-Barman et al. (1996) came from samples collected on the same Niskin bottle cast. 326 

Spatial variability, related to mesoscale eddies, is another potential source of rapid changes in 327 

surface 232Th concentration. Conservatively excluding the elevated observations >150 fmol/kg, 328 

no significant temporal term trend can be derived.  329 

When all observations are placed on a monthly axis (Fig. 4B), there is a hint that elevated 330 

surface 232Th concentrations are observed during the spring (Mar-Jun) season of Asian dust 331 

transport over the North Pacific. It appears that dissolved 232Th may be relatively constant 332 

throughout the year, consistent with the Th residence times of ~2 yrs derived in section 4.2. 333 

Unfortunately, few observations of dissolved 232Th have been yet made during the spring season 334 

when dust input can increase by 2 orders of magnitude (Hyslop et al., 2013). Of course, these 335 

data are sparse, but they do provide a baseline of variability against which future trace metal 336 

observations can be measured. 337 

4.4 Fe/Th ratio behavior in surface water and in colloidal content 338 

Before applying the 232Th flux technique, comparison of the time-series behavior of Fe 339 

(Fitzsimmons et al., submitted) and 232Th is informative in terms of relative solubility and 340 

relative removal rates (Fig. 5). This is possible because both elements have been analyzed on the 341 

same samples from HOE-DYLAN, HOE-PhoR and many of the HOT archive samples.  342 

In the context of daily, monthly and decadal variability, it appears that the ratio of total 343 

and particulate Fe/232Th tends to be at or above the dust-ratio of 11,040 mol/mol, while dissolved 344 

Fe/232Th is at or below the dust-ratio (Fig. 5A & 5B). These observations are consistent with 345 

input at the dust Fe/232Th ratio and a strong sink from biological uptake for Fe. Thus, the 346 

dissolved phase is left depleted in Fe relative to 232Th, while the particulate phase becomes 347 

enriched in biogenic Fe. The total Fe/Th ratio often exceeds the dust ratio as well, possibly 348 
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because biogenic particulate Fe may be efficiently recycled and thus may reside in the surface 349 

longer than particulate Th.  350 

The partitioning between dissolved and total/particulate Fe/232Th centers around the dust-351 

ratio (Fig. 5C). We interpret this to mean that the relative fractional solubility of Fe and 232Th 352 

(SFe/Th) is close to 1. An alternate interpretation would be that 232Th is more efficiently leached 353 

from dust, leaving the particulate phase enriched in Fe/232Th and the dissolved phase depleted in 354 

Fe/232Th. However, given the known ability for phytoplankton to efficiently utilize Fe from dust 355 

sources (e.g., (Rubin et al., 2011)), the assumption of SFe/Th = 1 during dissolution followed by 356 

rapid biological uptake of Fe seems more likely.   357 

Consideration of the size-partitioning of Fe and Th within the dissolved phase provides 358 

another constraint on the pathways these elements take after being released by dust.  This 359 

investigation was also used as an opportunity to determine whether 232Th and 230Th have 360 

coherent speciation, as assumed for the 232Th flux method.  Figure 6 presents these results based 361 

on measurements of ultra-filtered seawater from HOE-PhoR-II in September 2013. We define 362 

colloidal Th as dissolved (< 0.45 µm) minus soluble (< 10 kDa).  363 

Of the measured dissolved Th, less than 25% was found in the colloidal phase (0.45 µm-364 

10 kDa ≈ 0.01 µm). Furthermore, at least at 15 m, 130 m (DCM), and 1000 m, the colloidal 365 

percentage for 232Th and 230Th agreed within the uncertainty of the measurements. This result 366 

implies coherent speciation of these thorium isotopes despite very different sources and supports 367 

the use of 230Th as a tracer for 232Th removal. This coherent speciation result agrees with 368 

previous measurements of the 232Th/230Th ratio of filtered (< 0.2 µm) and ultrafiltered (< 1 kDa) 369 

solutions from the Mediterranean Sea (Roy-Barman et al., 2002). 370 
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The role of colloids in Th scavenging has much history and deserves a few words of 371 

context. Early models of scavenging inferred that Th likely goes through a colloidal intermediate 372 

before being scavenged by larger, sinking particles (Honeyman et al., 1988; Honeyman and 373 

Santschi, 1989). Subsequent attempts at measuring colloidal Th focused largely on 234Th (see 374 

review by (Guo and Santschi, 2007)), in part due to its use in quantifying organic matter export. 375 

A generalization might be made that outside of the coastal ocean, colloidal 234Th was found to be 376 

relatively small (~<15%) proportion of the total dissolved (e.g., (Guo et al., 1997; Huh and Prahl, 377 

1995; Moran and Buesseler, 1992)), which is also consistent with our 230Th/232Th results. Recent 378 

observations from the North Atlantic (Hayes et al., submitted), however, observed scavenging 379 

characteristics consistent with a strong role for Th colloids as predicted by Honeyman and 380 

Santschi (1989), even at open-ocean particle concentrations of < 10 µg/kg seawater. Further 381 

observations on the geographic distribution of colloidal Th are clearly warranted. 382 

Our paired observations of Th and Fe size partitioning nonetheless provide additional 383 

information on their physicochemical speciation in a comparative sense. Dissolved Fe has much 384 

more colloidal content at ALOHA than Th (Fig. 6). Above the DCM, dissolved Fe can be >50% 385 

colloidal. In the deeper water column, to 1.5 km depth, colloidal Fe is relatively constant at 40% 386 

(with the exception of one sample < 10% colloidal at 650 m). Since Fe and 232Th are apparently 387 

solubilized from dust with equal fractional solubility, this difference in size-speciation is most 388 

likely also due to the selective uptake or complexation of Fe by organic substrates. Ligands, in 389 

the form of macromolecular organic molecules or organic colloidal particles, most likely 390 

complex Fe released from dust quite rapidly in the upper water column (Bressac and Guieu, 391 

2013; Mendez et al., 2010).  It is the size of these organic Fe-binding ligands that are thought to 392 

convert such a large percentage of dissolved Fe to colloidal size, as other similarly hydrolyzable 393 
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metals such as Al and Ti do not have significant colloidal components (Dammshäuser and Croot, 394 

2012). 395 

Similar to Al and Ti, the abundance of macromolecular ligands (>10 kDa) with an 396 

affinity to complex Th must also be small compared to the source of dissolved Th from dust. 397 

This finding does not necessarily contradict previous evidence for significant organic 398 

complexation of Th in seawater (Santschi et al., 2006). It does require, however, that any 399 

significant Th complexation is done by small (<10 nm), low-molecular weight organic 400 

molecules, at least at station ALOHA. 401 

Greater uptake of Fe into the colloidal phase is another piece of evidence that suggests 402 

that dissolved Fe is cycled more rapidly than Th in the upper water column. The innovation of 403 

the 232Th flux method is our ability to be quantitative about the rates of Fe removal, which are 404 

presented in the next section.        405 

4.5 Iron residence times 406 

Using the 2012-2013 Th profile data, we extend our calculations for Th residence time 407 

down to 1.5 km water depth in Fig. 7A. Beginning at the 1-2 years residence times calculated by 408 

integrating to the DCM, the Th residence times increase nearly linearly with integration depth to 409 

14 years at 1.5 km.  Dividing the integrated dissolved 232Th inventories by these residence times 410 

gives our estimate of dissolved 232Th flux, as function of integration depth, in Fig. 7B.   411 

In June and Sept. 2013, the dissolved 232Th flux increased with integration depth and 412 

begins to level-off around 500 m.  This reflects that, at these times, the inventory of dissolved 413 

232Th increased with integration depth slightly more quickly than the increase in Th residence 414 

time with depth. Interestingly, in July 2012, the dissolved 232Th flux decreased with integration 415 

depth, reflecting that the Th residence time increased more quickly than the dissolved 232Th 416 
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inventory, largely because the mixed layer 230Th concentrations were exceptionally low at this 417 

time. Estimated 232Th fluxes are clearly quite sensitive to short-term variability in scavenging 418 

rates. We suggest further time-series analysis along with modelling efforts that contain 419 

circulation and realistic particle fluxes to determine more quantitatively the sensitivities involved 420 

in calculating dissolved 232Th fluxes during moderate changes in scavenging rates and dust input.  421 

The three flux profiles converge around 1000 m depth. This is encouraging that over 422 

longer integration times, 10-15 years in this case, we estimate consistent lithogenic metal fluxes 423 

at multiple time points. Using Eq. 1, the dissolved 232Th fluxes are simply converted to dust-424 

dissolved Fe fluxes, using SFe/Th = 1 and (Fe/Th)dust = 11,040 mol/mol, shown in the second x-425 

axis in Fig. 7B.  The depth profiles of dissolved Fe concentrations from the same sampling 426 

campaigns are shown in Fig. 7C (Fitzsimmons et al., submitted).  Finally, using Eq. 2, by 427 

integrating Fe inventories and dividing by the dust-dissolved Fe fluxes, we estimate the residence 428 

time of dissolved Fe, as a function of integrated depth in Fig. 7D.   429 

In the upper 250 m, the residence time of dissolved Fe is 6 months to 1 year. This range 430 

agrees well with the 6 month residence time estimated previously at station ALOHA (Boyle et 431 

al., 2005), and with other estimates of surface ocean dissolved Fe residence times from the 432 

Atlantic based on measured Fe concentrations and assumptions about soluble aerosol deposition 433 

(Bergquist and Boyle, 2006; Jickells, 1999; Ussher et al., 2013). With such fast turnover times, 434 

dissolved Fe concentrations in surface waters can be expected to vary on monthly to yearly 435 

timescales with changes in the seasonal input of dust from Asia, which is exactly what was 436 

observed over the HOT and HOE time-series (Fitzsimmons et al., submitted).  437 

Available aerosol data suggest that Asian dust transport over the North Pacific has no 438 

significant trend from 1981 to 2000 (Prospero et al., 2003) and perhaps a 6% decline over the 439 
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past 10 years (Hyslop et al., 2013). Because of a nearly immediate impact on surface water Fe 440 

concentrations and the associated ecological consequences, it is important to monitor future 441 

changes in Fe sources. Sources such as Asian desert dust in our changing climate may vary 442 

independently of other Fe sources such as combustion aerosols.     443 

As one integrates further from 250 m to 1500 m, while the dissolved Fe fluxes change 444 

only moderately, the dissolved Fe residence times increase quickly to about 10 years at 1500 m 445 

depth.  This is due to the large increase in Fe concentrations at these depths due to 446 

remineralization of Fe from sinking organic material and some portion of Fe accumulated and 447 

transported to ALOHA laterally via deep ocean circulation. There is potentially additional input 448 

of Fe at ~1 km depth due to Loihi hydrothermal activity. Additional lateral sources would cause 449 

our dust-based dissolved Fe residence time to be an overestimate, implying even faster 450 

timescales of Fe removal. On the other hand, as discussed in the next section, the 10 year Fe 451 

residence time at 1500 m could indeed be an underestimate, if the geochemical cycles of Th and 452 

Fe become decoupled at greater depths where dust dissolution is no longer a significant source of 453 

dissolved Fe. 454 

4.6 Fe and Th decoupling in the deep ocean 455 

Our focus on the upper water column stems from our motivation to understand trace 456 

metal cycling due to aerosol deposition and export production. We can extend our analysis of Fe 457 

and Th into the deep ocean (4.5 km water depth at station ALOHA) to learn about the 458 

geochemistry of these elements over decadal-to-centennial timescales. In Figure 8, we compiled 459 

available deep profiles from station ALOHA for dissolved Fe (Boyle et al., 2005; Fitzsimmons et 460 

al., submitted; Morton, 2010) and dissolved 232Th/230Th (this study; Roy-Barman et al. (1996)).   461 
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Variability in dissolved Fe at 1-1.5 km is clearly apparent, possibly due to hydrothermal 462 

inputs. Below 1.5 km depth, Fe, 232Th, and 230Th display relatively constant profile shapes, at 463 

least during the sparse sampling dates. From 2 km depth to the bottom, dissolved Fe is nearly 464 

constant or slightly decreases with depth to about 0.5 nmol/kg, while dissolved 232Th actually 465 

increases with depth from 50 to 180 fmol/kg below 3000 m.  This divergence in profile shape 466 

already suggests a decoupling of the behavior of these elements in the deep ocean.  467 

The deep ocean appears to contain an additional source for 232Th. This source is 468 

potentially related to resuspension of diagenetically-altered sediments at the seafloor (Hayes et 469 

al., 2013a; Okubo et al., 2012). The bottom-increase in 232Th begins nearly 2 km above the 470 

seafloor, much high than typical benthic vertical mixed layers (50-100 m) (Richards, 1990). This 471 

phenomenon, as observed with km-scale nepheloid layers (McCave, 1986), suggests that the 472 

232Th at abyssal depths of station ALOHA is being mixed in laterally from locations where 473 

isopycnals impinge on surrounding bathymetry.  474 

Also related to bottom sediment resuspension, the July 2012 profile of 230Th displays a 475 

negative concentration anomaly, or deficit of 230Th, with respect to the linear profile near the 476 

seafloor (Fig. 8C). This bottom 230Th deficit is indicative of enhanced bottom scavenging as 477 

observed in many parts of the deep North Pacific (Hayes et al., 2013b; Okubo et al., 2012). It is 478 

non-intuitive that in a bottom layer where the scavenging removal of Th is enhanced compared 479 

to the overlaying water column, that this layer would also be a strong source of 232Th. The 480 

resuspension of bottom sediments may produce such a strong release of 232Th that this source 481 

more than compensates for enhanced scavenging. 482 

Dissolved Fe, on the other hand, appears unaffected by bottom processes, displaying only 483 

a slight decrease in concentration with depth (Fig. 8A). The slight decrease with depth may be 484 
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related to scavenging of Fe as deep water masses age (Bruland et al., 1994). If we extend our 485 

integrated residence time approach to the deep Fe profile at station ALOHA (Fig. 9), we derive a 486 

whole ocean residence for dissolved Fe of only 30 years.  This is significantly shorter than the 487 

100-300 year estimates of the ocean residence time for dissolved Fe based on deepwater 488 

scavenging (Bergquist and Boyle, 2006; Bruland et al., 1994). This discrepancy arises most 489 

likely because the deep ocean source of 232Th does not add dissolved Fe to the water column at a 490 

crustal ratio, unlike what occurs during dust dissolution.  Thus, the 232Th flux method for Fe 491 

residence times cannot be extended to the deep ocean.   492 

The question remains: how is an element like Th, a trace component of continental 493 

material, added to the deep ocean without a simultaneous release of a major crustal element like 494 

Fe? The answer is likely related to solubility. 495 

 Dissolved Fe in the deep central North Pacific at ~0.5 nmol/kg has been found to be at 496 

near solubility equilibrium with Fe(III) hydroxide (Kitayama et al., 2009; Kuma et al., 2003).  497 

These studies determine Fe(III) solubility by adding gamma-emitter 59Fe(III) to filtered seawater, 498 

allowing the solutions to come to solubility equilibrium with Fe(III) hydroxide over several 499 

weeks, subsequently filtering the seawater and then counting the 59Fe gamma-activity on the 500 

final filtrate. The observed ~0.5 nmol/kg solubility is elevated over Fe solubility in inorganic 501 

seawater because of the presence of organic ligands (Liu and Millero, 2002). Thus, since the 502 

deep Pacific is in a near saturation state, dissolved Fe can no longer be expected to increase, even 503 

in the presence of increasing Th concentrations.  504 

A problem with this argument is that electrochemically-determined Fe ligand 505 

concentrations at station ALOHA are up to 2 nmol/kg, well in excess of dissolved Fe 506 

concentrations (Rue and Bruland, 1995), as found in most of the world ocean (Gledhill and 507 
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Buck, 2012). However, it may not be appropriate to compare Fe ligand determinations directly 508 

with seawater solubility. In either estimation, deepwater dissolved Fe is at least close to (within 509 

the same order of magnitude) our best estimates of Fe solubility. 510 

While much less in known about Th solubility in seawater, our large underestimate of Fe 511 

residence time in the deep ocean implies that the deep North Pacific, with Th at ~180 fmol/kg, is 512 

not near Th solubility equilibrium.  Near seawater pH and ionic strength, the solubility of Th(IV) 513 

hydroxide may be as high as 0.5-1 nmol/kg, compared to 1 fmol/kg for crystalline ThO2, due to 514 

the amorphous nature of Th(OH)4 solids (Neck et al., 2003). Despite our findings of low 515 

colloidal Th content, electrochemical methods suggest organic Th ligands may also exist at 516 

nanomolar concentrations (Hirose, 2004). Significant organic Th could of course be present at 517 

station ALOHA if the complexes are smaller than ~10 nm. We advocate direct measurements of 518 

Th solubility in seawater, perhaps using radio-tracer additions with similar protocols as 519 

developed for Fe (Kuma et al., 1996; Schlosser and Croot, 2008), to confirm that Th exists in the 520 

deep ocean at much less than its equilibrium solubility.  This would explain the fact that 521 

dissolved Th concentrations continue to grow from lithogenic sources in the deep North Pacific, 522 

where Fe concentrations become fixed by a solubility limit.    523 

5. Conclusions 524 

Using time-series data from the North Pacific, this study finds variability in surface Fe 525 

and 232Th concentrations consistent with a source from Asian dust. The dust source likely has a 526 

relative Fe/Th fractional solubility close to 1.  The application of 230Th scavenging rates to 232Th 527 

inventories allows the accurate prediction of the flux of dissolved metals from dust in the remote 528 

surface ocean. The source flux of dissolved Fe, derived from 230Th-based timescales, suggests 529 

that dissolved Fe in the upper 250 m is turning over in 1 year or less. A compelling implication 530 
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of this result is that Fe delivery to phytoplankton can be expected to vary with seasonal-to-531 

interannual changes in dust delivery from Asia.  Continued monitoring of Fe-dependent 532 

biological processes, such as nitrogen fixation, are crucial to anticipate the consequences of 533 

changing land-use and/or industrial processes that may significantly affect eolian sources of Fe 534 

to the North Pacific. In addition, we hypothesize that iron reaches a solubility limit in the deep 535 

sea (>2 km) while Th does not, and the influx of Th cannot be used as a proxy for Fe sources in 536 

this environment. Thus, the kinetic box model approach to tracing dust-derived elements (Fig. 1) 537 

appears applicable only in the upper water column (~250 m).  538 
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  547 

Figure Captions 548 

Figure 1.  Tracing the Fe cycle with the behavior of the long-lived thorium isotopes. Thorium-549 
230 has a well-known source from the radioactive decay of its parent 234U. This allows a 550 
quantitative estimate of Th removal due to scavenging on to particles. This removal rate can be 551 
used to estimate the steady-state source of 232Th from the partial dissolution of aerosol dust. 552 
While Fe has many more terms in its biogeochemical cycling, its ultimate source from dust 553 
dissolution can be predicted using known 232Th fluxes and the relative solubility of Fe and Th. 554 
Assuming Fe is derived only from dust, one can then estimate a maximum Fe residence time or 555 
minimum turnover rate. 556 
 557 
Figure 2. Depth profiles from the Hawaii Ocean Time-series station ALOHA from sampling 558 
campaigns in 2012-2013. In July 2012 and June 2013, profiles for dissolved 232Th (A) and 230Th 559 
(B) were collected in two casts (shallow to 250 m and deep to 1500 m) on different days. 560 
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Relative uncertainty in isotope concentrations was 1-5% and thus errors bars would be close to 561 
the symbol size. The hydrographic profiles (C-F) are shown from the shallow cast only.   562 
 563 
Figure 3. Thorium residence times, or turnover rates, calculated for the upper 150 m at station 564 
ALOHA on a monthly axis combining data from 1999 to 2014. These times are calculated by 565 
comparing integrated Th inventories to integrated production by uranium decay. The 234Th-based 566 
results are reported by Buesseler et al. (2009) and Benitez-Nelson et al. (2001). Note the 230Th-567 
based results from March 2014 are not based on profiles but on single samples from 25 m, 568 
assuming uniform concentrations in the upper 150 as seen in the 2012-2013 profiles (Fig. 2).   569 
 570 
Figure 4. Station ALOHA time-series data from the surface ocean (0-10 meters depth) on 571 
dissolved (filtered at 0.45 or 0.4 µm), total (unfiltered) and particulate (digested 0.4 µm filter) 572 
232Th in full time-series (1994-2014) (A), monthly climatology (1991-2014) (B) and during a 573 
daily resolution period in July-Sept. 2012 (C). Note change in scale of y-axes at 160 fmol/kg. 574 
Results from 1994 were reported by Roy-Barman et al. (1996). Open circles represent samples 575 
collected using a mooring rather than ship-based sampling (Sec. 4.1). Relative uncertainty in 576 
dissolved, total and particulate 232Th concentrations was 1-10%. 577 
 578 
Figure 5. Station ALOHA time-series data from the surface ocean (0-10 meters depth) (A), 579 
monthly climatology (B) and a daily resolution period in July-Sept. 2012 (C) of the dissolved 580 
(filtered at 0.45 or 0.4 µm), total (unfiltered) and particulate (digested 0.4 µm filter) Fe/232Th 581 
ratio. Note change in scale of y-axes at 25,000 mol/mol.  The dotted lines represent the Fe/232Th 582 
ratio of Asian dust of 10,800 ± 1,200 mol/mol (1σ). Note in (C), four samples with particulate 583 
Fe/232Th ratios greater than 40,000 are not shown. Open circles represent samples collected using 584 
a mooring rather than ship-based sampling (Sec. 4.1). 585 
 586 
Figure 6. Depth profiles of the percentage of dissolved metals (<0.45 µm for Th or <0.4 µm for 587 
Fe) that are in the colloidal size fraction (roughly 10-400 nm) from station ALOHA in late 588 
September 2013. Colloidal content is estimated by subtracting the metal concentration in 0.4 µm 589 
filtered seawater (dissolved) from that passing through a 10 kDa membrane filter by cross-flow 590 
filtration (soluble).  Colloidal fractions of 232Th and 230Th agree within uncertainties, while Fe 591 
colloidal content is 2-3 times larger.  592 
 593 
Figure 7. Application of dissolved 232Th fluxes to predict the residence time of dissolved Fe in 594 
seawater at station ALOHA during 2012-2013. Dissolved Th residence times (A) are calculated 595 
as a function of integration depth using radioactive disequilibrium between 234U and 230Th. The 596 
integrated 232Th inventories divided by these residence times produces an estimate of the 597 
dissolved 232Th flux (B) due to dust dissolution. Assuming equal fractional solubilities 598 
dissolution and a near crustal composition for Asian dust, the flux of dissolved Fe from dust can 599 
be predicted using the second x-axis in (B). The integration of dissolved Fe inventories based on 600 
concentration profiles shown in (C) (Fitzsimmons et al., submitted), produces our estimate of 601 
dissolved Fe residence time in (D, note change in scale of x-axis at 1.2 yrs). 602 
 603 
Figure 8. Full ocean depth profiles from station ALOHA for dissolved Fe (A), 232Th (B) and 604 
230Th (C) using data from this study (July 2012) and compiled from the literature. Iron data from 605 
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April 2001 and July 2002 were reported by Boyle et al. (2005) and from June 2002 by Morton 606 
(2010). Dissolved Th data from 1994 were reported by Roy-Barman et al. (1996). Note in (C) the 607 
dotted grey line is the linear regression of 230Th data between 1 and 3.5 km, which when 608 
extended to the seafloor demonstrates that the bottom two samples are less than expected from 609 
reversible scavenging and imply enhanced scavenging (assuming no other processes affect 610 
supply and removal of 230Th here). 611 
 612 
Figure 9. Application of dissolved 232Th fluxes to predict Fe residence times for the full depth 613 
ocean at station ALOHA. Here data from July 2012 are used to calculate 232Th fluxes (A). The 614 
depth profiles of Fe concentrations presented in Fig. 8 were averaged to calculate the dissolved 615 
Fe residence times as a function of integration depth (B). The 30 year ocean residence for 616 
dissolved Fe is significantly lower than the century-scale residence times derived by other 617 
approaches, suggesting that 232Th flux may not be an accurate proxy for Fe sources in the deep 618 
ocean. 619 
 620 
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