23 research outputs found

    Color superconducting quark matter core in the third family of compact stars

    Get PDF
    We investigate first order phase transitions from β\beta-equilibrated hadronic matter to color flavor locked quark matter in compact star interior. The hadronic phase including hyperons and Bose-Einstein condensate of KK^- mesons is described by the relativistic field theoretical model with density dependent meson-baryon couplings. The early appearance of hyperons and/or Bose-Einstein condensate of KK^- mesons delays the onset of phase transition to higher density. In the presence of hyperons and/or KK^- condensate, the overall equations of state become softer resulting in smaller maximum masses than the cases without hyperons and KK^- condensate. We find that the maximum mass neutron stars may contain a mixed phase core of hyperons, KK^- condensate and color superconducting quark matter. Depending on the parameter space, we also observe that there is a stable branch of superdense stars called the third family branch beyond the neutron star branch. Compact stars in the third family branch may contain pure color superconducting core and have radii smaller than those of the neutron star branch. Our results are compared with the recent observations on RX J185635-3754 and the recently measured mass-radius relationship by X-ray Multi Mirror-Newton Observatory.Comment: 24 pages, RevTex, 9 figures included; section II shortened, section III elaborated, two new curves in Fig. 9 and acknowledgements added; version to bepublished in Phys. Rev.

    Antikaon condensation and the metastability of protoneutron stars

    Get PDF
    We investigate the condensation of Kˉ0\bar K^0 meson along with KK^- condensation in the neutrino trapped matter with and without hyperons. Calculations are performed in the relativistic mean field models in which both the baryon-baryon and (anti)kaon-baryon interactions are mediated by meson exchange. In the neutrino trapped matter relevant to protoneutron stars, the critical density of KK^- condensation is shifted considerably to higher density whereas that of Kˉ0\bar K^0 condensation is shifted slightly to higher density with respect to that of the neutrino free case. The onset of KK^- condensation always occurs earlier than that of Kˉ0\bar K^0 condensation. A significant region of maximum mass protoneutron stars is found to contain Kˉ0\bar K^0 condensate for larger values of the antikaon potential. With the appearance of Kˉ0\bar K^0 condensation, there is a region of symmetric nuclear matter in the inner core of a protoneutron star. It is found that the maximum mass of a protoneutron star containing KK^- and Kˉ0\bar K^0 condensate is greater than that of the corresponding neutron star. We revisit the implication of this scenario in the context of the metastability of protoneutron stars and their evolution to low mass black holes.Comment: 26 pages; Revtex; 8 figures include

    Heat and momentum transport in micro-channels

    No full text

    Assessing coastal benthic macrofauna community condition using best professional judgement – Developing consensus across North America and Europe

    No full text
    Benthic indices are typically developed independently by habitat, making their incorporation into large geographic scale assessments potentially problematic because of scaling inequities. A potential solution is to establish common scaling using expert best professional judgment (BPJ). To test if experts from different geographies agree on condition assessment, sixteen experts from four regions in USA and Europe were provided species-abundance data for twelve sites per region. They ranked samples from best to worst condition and classified samples into four condition (quality) categories. Site rankings were highly correlated among experts, regardless of whether they were assessing samples from their home region. There was also good agreement on condition category, though agreement was better for samples at extremes of the disturbance gradient. The absence of regional bias suggests that expert judgment is a viable means for establishing a uniform scale to calibrate indices consistently across geographic regions

    Localizing resonant magnetic perturbations for edge localized mode control in KSTAR

    No full text
    An external 3D magnetic perturbation typically drives a resonant response at the rational surfaces from the core to the edge of tokamak plasmas, due to strong mode coupling and amplification. This paper presents a method to isolate the edge from core resonant fields using the ideal perturbed equilibrium code and to design an edge-localized resonant magnetic perturbation (RMP) for effective edge localized mode (ELM) control. A robust feature of the edge-localized RMP is the curtailed response to the field at the low-field-side (LFS) midplane, as opposed to typical RMPs which strongly resonate with the LFS fields. This emphasizes the importance of off-midplane coils to improve ELM control without provoking a large core response that could lead to devastating instabilities. The conceptual design of new ELM control coils based on the edge-localized RMP in KSTAR shows how this new insight can be utilized to enhance the efficiency of our ELM suppression capabilities. Simple window-pane coils matching the edge-localized resonant mode structure substantially expand in the ELM suppression window beyond the existing coil. Further optimization using the flexible optimized coils using space-curves code leads to additional enhancement in the edge-localized control
    corecore