397 research outputs found

    Periodicity of chaotic trajectories in realizations of finite computer precisions and its implication in chaos communications

    Full text link
    Fundamental problems of periodicity and transient process to periodicity of chaotic trajectories in computer realization with finite computation precision is investigated by taking single and coupled Logistic maps as examples. Empirical power law relations of the period and transient iterations with the computation precisions and the sizes of coupled systems are obtained. For each computation we always find, by randomly choosing initial conditions, a single dominant periodic trajectory which is realized with major portion of probability. These understandings are useful for possible applications of chaos, e.g., chaotic cryptography in secure communication.Comment: 10 pages, 3 figures, 2 table

    Analysis on relationship between extreme pathways and correlated reaction sets

    Get PDF
    Background: Constraint-based modeling of reconstructed genome-scale metabolic networks has been successfully applied on several microorganisms. In constraint-based modeling, in order to characterize all allowable phenotypes, network-based pathways, such as extreme pathways and elementary flux modes, are defined. However, as the scale of metabolic network rises, the number of extreme pathways and elementary flux modes increases exponentially. Uniform random sampling solves this problem to some extent to study the contents of the available phenotypes. After uniform random sampling, correlated reaction sets can be identified by the dependencies between reactions derived from sample phenotypes. In this paper, we study the relationship between extreme pathways and correlated reaction sets.Results: Correlated reaction sets are identified for E. coli core, red blood cell and Saccharomyces cerevisiae metabolic networks respectively. All extreme pathways are enumerated for the former two metabolic networks. As for Saccharomyces cerevisiae metabolic network, because of the large scale, we get a set of extreme pathways by sampling the whole extreme pathway space. In most cases, an extreme pathway covers a correlated reaction set in an \u27all or none\u27 manner, which means either all reactions in a correlated reaction set or none is used by some extreme pathway. In rare cases, besides the \u27all or none\u27 manner, a correlated reaction set may be fully covered by combination of a few extreme pathways with related function, which may bring redundancy and flexibility to improve the survivability of a cell. In a word, extreme pathways show strong complementary relationship on usage of reactions in the same correlated reaction set.Conclusion: Both extreme pathways and correlated reaction sets are derived from the topology information of metabolic networks. The strong relationship between correlated reaction sets and extreme pathways suggests a possible mechanism: as a controllable unit, an extreme pathway is regulated by its corresponding correlated reaction sets, and a correlated reaction set is further regulated by the organism\u27s regulatory network.<br /

    Developing and Activated T Cell Survival Depends on Differential Signaling Pathways to Regulate Anti-Apoptotic Bcl-xL

    Get PDF
    Survival of T cells in both the central and peripheral immune system determines its ultimate function in the regulation of immune responses. In the thymus, developing T cells undergo positive and negative selection to generate a T cell repertoire that responds to foreign, but not self, antigens. During T cell development, the T cell receptor α chain is rearranged. However, the first round of rearrangement may fail, which triggers another round of α chain rearrangement until either successful positive selection or cell death occurs. Thus, the lifespan of double positive (CD4+CD8+; DP) thymocytes determines how many rounds of α chain rearrangement can be carried out and influences the likelihood of completing positive selection. The anti-apoptotic protein Bcl-xL is the ultimate effector regulating the survival of CD4+CD8+ thymocytes subject to the selection process, and the deletion of Bcl-xL leads to premature apoptosis of thymocytes prior to the completion of the developmental process. In addition to its critical function in the thymus, Bcl-xL also regulates the survival of peripheral T cells. Upon engagement with antigens, T cells are activated and differentiated into effectors. Activated T cells upregulate Bcl-xL to enhance their own survival. Bcl-xL-mediated survival is required for the generation of effectors that carry out the actual immune responses. In the absence of Bcl-xL, mature T cells undergo apoptosis prior to the completion of the differentiation process to become effector cells. Therefore, Bcl-xL ensures the survival of both developing and peripheral T cells, which is essential for a functional immune system

    ADMINISTRATION OF THE WEST LAKE WATER AREA, HANGZHOU

    Get PDF
    The comparison test of the function of aquatic biology, such as Viviparidae, Hyriopsis Cvmingiilleal, water spinach and underwater plants on the purification of the water body, has been made in the test area of West Lake. The result shows that the spiral is the test one to improve the transparency of the water body, then the Hyriopsis Cvmingiilleal, water spinach and underwater plant in succession. At the same time planting method, raising density, purification function of water body, and the possibility of planting, have been studied.Article信州大学理学部附属諏訪臨湖実験所報告 11: 13-20(1999)departmental bulletin pape

    Model-based Comparative Prediction of Transcription-Factor Binding Motifs in Anabolic Responses in Bone.

    Get PDF
    Understanding the regulatory mechanism that controls the alteration of global gene expression patterns continues to be a challenging task in computational biology. We previously developed an ant algorithm, a biologically-inspired computational technique for microarray data, and predicted putative transcription-factor binding motifs (TFBMs) through mimicking interactive behaviors of natural ants. Here we extended the algorithm into a set of web-based software, Ant Modeler, and applied it to investigate the transcriptional mechanism underlying bone formation. Mechanical loading and administration of bone morphogenic proteins (BMPs) are two known treatments to strengthen bone. We addressed a question: Is there any TFBM that stimulates both “anabolic responses of mechanical loading” and “BMP-mediated osteogenic signaling”? Although there is no significant overlap among genes in the two responses, a comparative model-based analysis suggests that the two independent osteogenic processes employ common TFBMs, such as a stress responsive element and a motif for peroxisome proliferator-activated receptor (PPAR). The post-modeling in vitro analysis using mouse osteoblast cells supported involvements of the predicted TFBMs such as PPAR, Ikaros 3, and LMO2 in response to mechanical loading. Taken together, the results would be useful to derive a set of testable hypotheses and examine the role of specific regulators in complex transcriptional control of bone formation

    Exploring the active mechanism of berberine against HCC by systematic pharmacology and experimental validation

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Berberine (BBR) is the main component of Coptidis rhizoma, the dried rhizome of Coptis chinensis and is a potential plant alkaloid used for the treatment of cancer due to its high antitumor activity. The present study examined the therapeutic potential and molecular mechanism of action of BBR against HCC, using systematic pharmacology combined with a molecular docking approach and experimental validation in vitro. Through systematic pharmacological analysis, it was found that BBR serves a significant role in inhibiting HCC by affecting multiple pathways, especially the PI3K/AKT signaling pathway. Furthermore, the docking approach indicated that the binding of BBR to AKT could lead to the suppression of AKT activity. The present study examined the inhibitory effect of BBR on the PI3K/AKT pathway in HCC and identified that BBR downregulated the expressions of phosphorylated AKT and PI3K in MHCC97‑H and HepG2 cells, inhibiting their growth, cell migration and invasion in a dose‑dependent manner. In addition, inhibition of the AKT pathway by BBR also contributed to cell apoptosis in MHCC97‑H and HepG2 cells. Taken together, the results of the present study suggested that BBR may be a promising antitumor drug for HCC that acts by inhibiting the PI3K/AKT pathway

    The Roles of Buyang Huanwu Decoction in Anti-Inflammation, Antioxidation and Regulation of Lipid Metabolism in Rats with Myocardial Ischemia

    Get PDF
    Buyang Huanwu Decoction (BYHWD) is a well-known Chinese medicine formula. Recent studies have reported that BYHWD can be used to treat ischemic heart disease. This study investigated the potential mechanism underlying the roles of BYHWD in alleviating the myocardial ischemia induced by isoproterenol (ISO) in rats. Different doses of BYHWD (25.68, 12.84 and 6.42 g kg−1) were lavaged to rats, respectively. Then the expression of the cluster of differentiation 40 (CD40) in the mononuclear cells was measured using flow cytometry, and the expressions of CD40 and its ligand (CD40L) in myocardial tissues were determined by western blotting. The serum biochemical values of superoxide dismutase (SOD) activity, the malondialdehyde (MDA) level and the free fatty acid (FFA) content were measured. The results showed that the SOD activities of BYHWD groups were significantly higher than that of the ISO group, while the MDA levels and FFA contents of all BYHWD groups were lower than that of the ISO group. BYHWD could decrease the expression of CD40 in the mononuclear cells and the CD40 and CD40L expressions in myocardial tissues. Our data suggest that the roles of BYHWD are not only related to its antioxidative action and regulation of lipid metabolisms, but also to the inhibition of inflammatory pathway by the decreased CD40 and CD40L expressions in rats with myocardial ischemia
    corecore