884 research outputs found

    Kelvin-Helmholtz instability of a coronal streamer

    Full text link
    The shear-flow-driven instability can play an important role in energy transfer processes in coronal plasma. We present for the first time the observation of a kink-like oscillation of a streamer probably caused by the streaming kinkmode Kelvin-Helmholtz instability. The wave-like behavior of the streamer was observed by Large Angle and Spectrometric Coronagraph Experiment (LASCO) C2 and C3 aboard SOlar and Heliospheric Observatory (SOHO). The observed wave had a period of about 70 to 80 minutes, and its wavelength increased from 2 Rsun to 3 Rsun in about 1.5 hours. The phase speeds of its crests and troughs decreased from 406 \pm 20 to 356 \pm 31kms^{-1} during the event. Within the same heliocentric range, the wave amplitude also appeared to increase with time. We attribute the phenomena to the MHD Kelvin-Helmholtz instability which occur at a neutral sheet in a fluid wake. The free energy driving the instability is supplied by the sheared flow and sheared magnetic field across the streamer plane. The plasma properties of the local environment of the streamer were estimated from the phase speed and instability threshold criteria.Comment: ApJ, accepte

    Fallback and Black Hole Production in Massive Stars

    Get PDF
    The compact remnants of core collapse supernovae - neutron stars and black holes - have properties that reflect both the structure of their stellar progenitors and the physics of the explosion. In particular, the masses of these remnants are sensitive to the density structure of the presupernova star and to the explosion energy. To a considerable extent, the final mass is determined by the ``fallback'', during the explosion, of matter that initially moves outwards, yet ultimately fails to escape. We consider here the simulated explosion of a large number of massive stars (10 to 100 \Msun) of Population I (solar metallicity) and III (zero metallicity), and find systematic differences in the remnant mass distributions. As pointed out by Chevalier(1989), supernovae in more compact progenitor stars have stronger reverse shocks and experience more fallback. For Population III stars above about 25 \Msun and explosion energies less than 1.5×10511.5 \times 10^{51} erg, black holes are a common outcome, with masses that increase monotonically with increasing main sequence mass up to a maximum hole mass of about 35 \Msun. If such stars produce primary nitrogen, however, their black holes are systematically smaller. For modern supernovae with nearly solar metallicity, black hole production is much less frequent and the typical masses, which depend sensitively on explosion energy, are smaller. We explore the neutron star initial mass function for both populations and, for reasonable assumptions about the initial mass cut of the explosion, find good agreement with the average of observed masses of neutron stars in binaries. We also find evidence for a bimodal distribution of neutron star masses with a spike around 1.2 \Msun (gravitational mass) and a broader distribution peaked around 1.4 \Msun.Comment: Accepted for publication in Ap

    Two-Dimensional Core-Collapse Supernova Models with Multi-Dimensional Transport

    Full text link
    We present new two-dimensional (2D) axisymmetric neutrino radiation/hydrodynamic models of core-collapse supernova (CCSN) cores. We use the CASTRO code, which incorporates truly multi-dimensional, multi-group, flux-limited diffusion (MGFLD) neutrino transport, including all relevant O(v/c)\mathcal{O}(v/c) terms. Our main motivation for carrying out this study is to compare with recent 2D models produced by other groups who have obtained explosions for some progenitor stars and with recent 2D VULCAN results that did not incorporate O(v/c)\mathcal{O}(v/c) terms. We follow the evolution of 12, 15, 20, and 25 solar-mass progenitors to approximately 600 milliseconds after bounce and do not obtain an explosion in any of these models. Though the reason for the qualitative disagreement among the groups engaged in CCSN modeling remains unclear, we speculate that the simplifying ``ray-by-ray' approach employed by all other groups may be compromising their results. We show that ``ray-by-ray' calculations greatly exaggerate the angular and temporal variations of the neutrino fluxes, which we argue are better captured by our multi-dimensional MGFLD approach. On the other hand, our 2D models also make approximations, making it difficult to draw definitive conclusions concerning the root of the differences between groups. We discuss some of the diagnostics often employed in the analyses of CCSN simulations and highlight the intimate relationship between the various explosion conditions that have been proposed. Finally, we explore the ingredients that may be missing in current calculations that may be important in reproducing the properties of the average CCSNe, should the delayed neutrino-heating mechanism be the correct mechanism of explosion.Comment: ApJ accepted version. Minor changes from origina

    Very Low Energy Supernovae: Light Curves and Spectra of Shock Breakout

    Full text link
    The brief transient emitted as a shock wave erupts through the surface of a presupernova star carries information about the stellar radius and explosion energy. Here the CASTRO code, which treats radiation transport using multigroup flux-limited diffusion, is used to simulate the light curves and spectra of shock breakout in very low-energy supernovae (VLE SNe), explosions in giant stars with final kinetic energy much less than 1051^{51} erg. VLE SNe light curves, computed here with the KEPLER code, are distinctively faint, red, and long-lived, making them challenging to find with transient surveys. The accompanying shock breakouts are brighter, though briefer, and potentially easier to detect. Previous analytic work provides general guidance, but numerical simulations are challenging due to the range of conditions and lack of equilibration between color and effective temperatures. We consider previous analytic work and extend discussions of color temperature and opacity to the lower energy range explored by these events. Since this is the first application of the CASTRO code to shock breakout, test simulations of normal energy shock breakout of SN1987A are carried out and compared with the literature. A set of breakout light curves and spectra are then calculated for VLE SNe with final kinetic energies in the range 1047−105010^{47} - 10^{50} ergs for red supergiants with main sequence masses 15 Msun and 25 Msun. The importance of uncertainties in stellar atmosphere model, opacity, and ambient medium is discussed, as are observational prospects with current and forthcoming missions.Comment: 19 pages; submitted to Astrophysical Journa
    • …
    corecore