13,615 research outputs found

    Report of an exploratory study: Safety and liability considerations for photovoltaic modules/panels

    Get PDF
    An overview of legal issues as they apply to design, manufacture and use of photovoltaic module/array devices is provided and a methodology is suggested for use of the design stage of these products to minimize or eliminate perceived hazards. Questions are posed to stimulate consideration of this area

    Symplectic Microgeometry II: Generating functions

    Full text link
    We adapt the notion of generating functions for lagrangian submanifolds to symplectic microgeometry. We show that a symplectic micromorphism always admits a global generating function. As an application, we describe hamiltonian flows as special symplectic micromorphisms whose local generating functions are the solutions of Hamilton-Jacobi equations. We obtain a purely categorical formulation of the temporal evolution in classical mechanics.Comment: 27 pages, 1 figur

    A General Local-to-Global Principle for Convexity of Momentum Maps

    Full text link
    We extend the Local-to-Global-Principle used in the proof of convexity theorems for momentum maps to not necessarily closed maps whose target space carries a convexity structure which need not be based on a metric. Using a new factorization of the momentum map, convexity of its image is proved without local fiber connectedness, and for almost arbitrary spaces of definition. Geodesics are obtained by straightening rather than shortening of arcs, which allows a unified treatment and extension of previous convexity results.Comment: 19 pages LaTeX2e, Preprint 2009, see also: Convexity of Momentum Maps: A Topological Analysis, several parts of the content were presented at the Young Topologists Meeting 2010 in Copenhagen, Denmark, June 16-20, 2010, and at Geometry, Mechanics, and Dynamics: A workshop celebrating the 60th birthday of Tudor Ratiu at CIRM, Luminy, France, July 12-16, 201

    Implementation of the Quantum Fourier Transform

    Get PDF
    The quantum Fourier transform (QFT) has been implemented on a three bit nuclear magnetic resonance (NMR) quantum computer, providing a first step towards the realization of Shor's factoring and other quantum algorithms. Implementation of the QFT is presented with fidelity measures, and state tomography. Experimentally realizing the QFT is a clear demonstration of NMR's ability to control quantum systems.Comment: 6 pages, 2 figure

    Task iv- /research/ of the solar energy thermionic /set/ conversion development program third quarterly progress report, 1 dec. 1964 - 28 feb. 1965

    Get PDF
    Operational parameters for thermionic converter - cesium vapor diode formulation and computer method of analysi

    Thermionic research program, volume I Final report

    Get PDF
    Design, fabrication, calibration, instrumentation, and operation of test converter to generate parameters in thermionic converter operatio

    CORE and the Haldane Conjecture

    Get PDF
    The Contractor Renormalization group formalism (CORE) is a real-space renormalization group method which is the Hamiltonian analogue of the Wilson exact renormalization group equations. In an earlier paper\cite{QGAF} I showed that the Contractor Renormalization group (CORE) method could be used to map a theory of free quarks, and quarks interacting with gluons, into a generalized frustrated Heisenberg antiferromagnet (HAF) and proposed using CORE methods to study these theories. Since generalizations of HAF's exhibit all sorts of subtle behavior which, from a continuum point of view, are related to topological properties of the theory, it is important to know that CORE can be used to extract this physics. In this paper I show that despite the folklore which asserts that all real-space renormalization group schemes are necessarily inaccurate, simple Contractor Renormalization group (CORE) computations can give highly accurate results even if one only keeps a small number of states per block and a few terms in the cluster expansion. In addition I argue that even very simple CORE computations give a much better qualitative understanding of the physics than naive renormalization group methods. In particular I show that the simplest CORE computation yields a first principles understanding of how the famous Haldane conjecture works for the case of the spin-1/2 and spin-1 HAF.Comment: 36 pages, 4 figures, 5 tables, latex; extensive additions to conten

    Fidelity Decay as an Efficient Indicator of Quantum Chaos

    Full text link
    Recent work has connected the type of fidelity decay in perturbed quantum models to the presence of chaos in the associated classical models. We demonstrate that a system's rate of fidelity decay under repeated perturbations may be measured efficiently on a quantum information processor, and analyze the conditions under which this indicator is a reliable probe of quantum chaos and related statistical properties of the unperturbed system. The type and rate of the decay are not dependent on the eigenvalue statistics of the unperturbed system, but depend on the system's eigenvector statistics in the eigenbasis of the perturbation operator. For random eigenvector statistics the decay is exponential with a rate fixed precisely by the variance of the perturbation's energy spectrum. Hence, even classically regular models can exhibit an exponential fidelity decay under generic quantum perturbations. These results clarify which perturbations can distinguish classically regular and chaotic quantum systems.Comment: 4 pages, 3 figures, LaTeX; published version (revised introduction and discussion
    • …
    corecore