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I N C  C O R P O R A l l O N  

I CHAPTER I 
I 

I INTRODUCTION AND SUMMARY 

The purpose of this experimental p rogram is to generate  detailed and 

highly accura te  data on the important pa rame te r s  involved in  the operation 

of a thermionic converter.  This data is being taken over a very  broad range 

of pa rame t r i c  variation, s o  that it will have general  validity for  future hard-  

ware  designs,  and so that it may be used for  insight and substantiation in 

analytical  work leading to a thorough understanding of the physics involved 

in the conversion process  itself. 

1 

I 
~ 

Such understanding will in  tu rn  allow fur -  
I 
I ther design optimization of hardware converters  and provide the guide l ines 

I 
f o r  future  experimentation in thermionics and related fields. 

I Thermo Elec t ron  has  performed substantial paramet r ic  experimentation 

and each study has helped point the way to  increased  con- 1 , 2 , 3 , 4  in the pas t ,  

ve r t e r  performance and to fur ther  experimentation. 

p rog ram has  indicated the need for  improved test vehicles and measuring 

equipment t o  provide g rea t e r  accuracy and flexibility in experimentation. 

At the same t ime each 

1. Annual Technical Summary Report  for  the Thermionic Emitter Ma- 
t e r i a l s  Research  Program.  Report No. T E  2-63, S. S. Kitr i lakis ,  
M. E. Meeker ,  N. S. Rasor.  

2. Second Annual Technical Summary Report  for  the Thermionic Emitter 
Mater ia l s  Research  Program.  Report No. T E  27-64, S. S. Kitr i lakis ,  
J. H. Weinstein. 

3. Additive Converter Studies Technical Documentary Report. Report  
No. TE35-64,  S. S. Kitri lakis,  J. H. Weinstein. 

4. Emitter Crystal  Structure  Study, Final Technical Report ,  Report  
No. TE36-64,  G. Miskolczy, S. S. Kitri lakis.  L. van Someren: 
J. H. Weinstein. 
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The present  program follows this s a m e  cour se ,  and ca l l s  for  making 

full  use  of recently developed technology and theoretical  knowledge to im- 

prove the t e s t  vehicle and associated equipment, and to  plan a whole s e r i e s  

of carefully controlled experiments which allow the isolation and study of 

each important converter  variable.  The program should resu l t  in  a com- 

plete s e t  of carefully cor re la ted  data and a detailed quantitative description 

of the conversion process .  

During the first two qua r t e r s  the design, development and fabrication 

of the two types of conver te rs  (cesium only and ces ium plus ces ium fluo- 

r ide)  w e r e  accomplished, as were  the design, development and fabrication 

of the assoc ia ted  t e s t  equipment. The resu l t  has  been shown during opera-  

tion to provide sma l l  interelectrode spacing, increased  t e s t  vehicle ve r sa -  

tility, and  a n  order-of-magnitude increase in the accuracy of the data. 

At the same  t ime both tungsten and rhenium emitters were  carefully 

prepared  and documented, and a n  exploratory analysis  was performed of 

ignited-mode operation in preparation fo r  the taking of paramet r ic  data on 

the t e s t  vehicle, Final ly ,  the initial experimental  work ,  which consisted 

pr imar i ly  of taking emi t te r  and collector work function data and of es tab-  

lishing the reproducibility of the data, was  performed. 

with those experiments a n  analysis  of the dependence of collector work 

function on spacing was a l s o  performed, 

In conjunction 

Significant p rogres s  i s  herein reported for  the third quar te r .  Rapid 

This work,  which is s t r ides  have been made in analysis  and correlat ion.  

repor ted  in  Chapter 11, is based upon a substantial  volume of experimental  

1-2 



L f R l N G  C O R P O R A T I O N  

data taken during the th i rd  quar te r .  

n11a 1 ---- l i t x r  " 1 of experimentally ~ b t a i c e d  elect,yical cutput c,E,ayacter-stics, 2nd 

identification of the various modes of operation by d i rec t  visual observa-  

tion in a magnetic scanning device, which has  permit ted the formulation of 

a great ly  improved analytical  model of the ces ium vapor diode. The rela- 

tions which cor re la te  the diode variables were  obtained by considering the 

basic  processes .  

e lec t r ica l  charac te r i s t ics  satisfactorily under a var ie ty  of conditions. 

constants which yield quantitative agreement  with experimental  data are 

a l s o  shown to be in good agreement  with values computed f r o m  the atomic 

propert ies  of cesium. 

It is the availability of this higher 

1 
i 

These relations a r e  shown to descr ibe  the f o r m  of the i 
The 

I 

Chapter 111 descr ibes  the equations and techniques used in the prepara-  

tion of a prel iminary computer formulation for  the pa rame t r i c  analysis.  

It a l s o  shows sample computer runs ,  computer output summar ie s ,  and 

samples  of the graphical tabulations to  which the computer output was r e -  

duced. The purpose of this work was to provide a f r a m e  of reference fo r  

taking and  reducing data ,  setting the limits of the most  useful a r e a s  for  

pa rame t r i c  s tudies ,  and tabulating predicted points with which data can be 

easi ly  compared to es tabl ish f i r s t -order  validity. 

Chapter IV repor t s  the initial additive data and pre l iminary  reduction 

of results. 

That i s ,  only ces ium fluoride has  been re leased  into the tube while the 

ces ium is held in a capsule for l a t e r  release.  

the behavior of the tungsten emit ter  surface a s  the ces ium fluoride cover-  

age  is  va r i ed  by variation in the additive r e se rvo i r  tempera ture ,  and f r o m  

This series of experiments is known as the fluoride-only phase. 

The purpose is to examine 

1-3  
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this to prepare  a map summarizing the relationship between emi t te r  work 

function, emit ter  surface temperature and additive r e se rvo i r  temperature:  

A very  prel iminary examination of the data indicates that the relationship 

between work function and coverage is somewhat more  complex with cesium 

fluoride than with cesium. 

I 

The r a t e  of data output, f rom the three  t e s t  vehicles,  is expected to be 

very high during the fourth qua r t e r ,  and data reduction and analysis will be 

conducted concurrently. F o r  the f i n a l  r epor t  it is expected that a complete 

se t  of maps for the cesium-only on rhenium case  will be complete,  and a I 
I 

much bet ter  understanding of the additive case  will have been achieved. 

1-4 



CHAPTER I1 

ANALYTICAL CORRELATION O F  
CONVERTER PHENOMENOLOGY 

I . Introduction 

The analysis  descr ibed he re  has  a pract ical  phenomenological bas i s ;  i. e. , 

i t  spr ings f rom a body of data obtained b y  systematically varying a l l  p r imary  

converter  variables over the range of values giving practically useful output 

power densit ies.  This large quantity of data i s  reduced to a s e r i e s  of paramet r ic  

plots which facilitate access  to the data, but which a r e  independent of in te rpre ta -  

tion. 

a r e  direct ly  useful for engineering design purposes ,  and indeed have been of 

significant value in hardware projects.  

cor re la t ions  among the variables have become apparent.  

be used to reduce the number of variables necessary  to represent  the data,  and 

thereby simplify the paramet r ic  representation without affecting i t s  generality. 

A s  i l lustrated in F igure  11-1, such paramet r ic  representations of the data 

During the course  of parametr ic  ana lys i s ,  

These correlat ions can 

Theoret ical  inquiry into the basic origin of such correlat ions also has  given 

c r i t i ca l  insight into the nature of fundamental p rocesses  which dominate convert-  

e r  operation for  conditions of pract ical  importance. l t 2  

various possible analytical models is greatly narrowed by the restr ic t ion that the 

model must  be consistent with observed converter  phenomenology over a g rea t  

variety of conditions, as  well a s  being self-consistent. In effect ,  the converter  

itself s e r v e s  as  an accura te ,  self-programming analog computer in this approach. 

Emphas is  i s  placed on defining a coherent reference framework for gaging the 

implications of existing data,  and for  intercomparison of various analytical 

models and sources  of data. 

The choice among 

11- 1 



During the past  few months, due to the availability of data f rom improved 

experimental  apparatus ,  rapid progress  has  been made in sl-nthesizing a coherent 

physical  model which is consistent both with the qualitative visual phenomenology 

of the discharge and with the quantitative e lec t r ica l  output charac te r i s t ics  

a wide variety of conditions. Fu r the rmore ,  the constants relating to the ob- 

se rved  data to the analytical model a r e  in much bet ter  agreement  with probable 

values of the atomic propert ies  of cesium than for the ea r l i e r  models. 

over 

Since the analysis and the comparison with data a r e  not yet complete,  only 

the most  important features  will be outlined and i l lustrated with representative 

data he re .  

forthcoming Annual Summary Report. 

A more complete and qualified description will be presented in the 

11. Saturation Mode of the Cesium Diode Discharge 

A .  Analytical Model The region AB of the e lec t r ica l  output character is t ic  

in F igu re  11-2 is  designated a s  the "saturation mode", and the corresponding 

motive d iagram is shown in F igure  3a. 

equal to the saturation cu r ren t  density J , gains an  energy V as  it i s  accelerated 

a c r o s s  the emit ter  shea thand this energy i s  dissipated in the plasma a short  but 

finite distance f r o m  the emit ter .  The resulting average electron temperature  in 

this region T is sufficiently high to produce the ions required to sustain the 
E 

plasma.  

mean-free-path,  i t  is shown in Appendix A that the c u r r e n t  density of e lectrons 

reaching the collector i s  given by 

The s t r e a m  of e lectrons f rom the emi t t e r ,  

S e 

Assuming a neutral  plasma of width d much g rea t e r  than the electron 

J 
for V 4 J "  

I1 -2 
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where 

T and T 

edges of the p lasma,  and V is the potential energy drop a c r o s s  the collector 

sheath. 

a r e  the respective electron tempera tures  a t  the emi t te r  and collector 
Ee E C  

C 

The physical significance of Eq. 1 is that the cur ren t  J - J returning to the 
S 

emi t te r  f rom the plasma i s  made up of two components: R is the fraction of J 

which i s  reflected by the collector sheath b a r r i e r  V , and -- i s  the fraction 
C 4 1  

which is reflected by the plasma. 

then surmounts the emit ter  sheath ba r r i e r  i s  exp [-V /kT ). 
The fraction of these reflected cu r ren t s  which 

e Ee 

It is shown in Appendix B that for  d>>X the t ranspor t  of energy a c r o s s  the 

plasma requi res  

kT = kT - V / 2  
E C  E e  c 

Also,  a s  may be seen in Fig.  3a ,  

V =  - @ + V - e V  
e e c c  

( 3 )  

Thus, Eqs. 1-4 prescr ibe  the electrical  output charac te r i s t ics  J(V) in the 

saturat ion mode. 

B. Analysis of Data. To facilitate comparison with experimental  data,  

Eqs. 1-4 combine to give 

S eV 3 
- T = 1 t- A (pd -t D) e x p [ r ]  

L^ie J 

11-3 
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where the quantities 

and 

should be essentially constant under conditions where T 

appreciably . 
does not change 

Ee 

F i g u r e  11-4 is a family of output charac te r i s t ics  in which only the electrode 

spacing i s  changed; all other  experimental  var iables  a r e  held constant. In F ig .  5 
1 i t  may be  seen that the data gives a linear relationship between-and pd for con- 

stant values  of V>V'. 
J 

These lines converge at a single point which, according to Eq. 5 ,  defines 

the values of J and D. F u r t h e r m o r e  according to Eq. 5 ,  the slope of these 

cu rves  is given by 
S 

so that A is the slope of the curve for V = 0. 

Using the value of J in Fig.  5 ,  the output charac te r i s t ics  of F ig .  4 can be 
S 

plotted as  in Fig.  6 ,  where Eq. 5 becomes a l inear equation in V of the f o r m  

I n -  - 1 = I n A ( p d t D )  t - 6 I [  ] ';e 
( 9 )  

II -4 



I 
i 

Since the slope of each curve in F ig .  6 is l / k T  , it is possible to obtain the de-  Ee 
penrlcnce of electron tet l lp?rat-Gre nn pd 1 s  ShC?Sxl" in Fin. 7 .  

can  be computed f rom the value of J obtained in Fig.  5 using 
e S 

6 
I 

The value of d, 

the Richardson equation 

AT' 
qie= kT e l n ( e )  

I 4 
and d, is  known f r o m  independent data. Thus ,  with these known values of 

@e C €e  
f r o m  Fig.  5 can be  used to compute V and (p A )  f r o m  Eqs. 6 and 7 ,  Since it is 

not possible to solve explicitly for  these quantit ies,  Fig.  8 is a plot of the com-  

bination of Eqs. 6 and 7 f r o m  which the value of V can  be obtained easily. 

C ' and Q\ and using the values of kT in  Fig.  7 ,  the values of A and D obtained . 

C 

C 

Inspection of F igs .  5 - 7 shows that E,. 5 descr ibes  the data in F ig .  4 

fo r  the following set of values: 

2 
J = 21. 1 a m p / c m  

A = 0. 025 (mi l - tor r )  

D = 14 mil- torr  

kT ~ 0 . 4  e V  (or ,  more  precisely,  f r o m  F ig .  7 )  

S 

-1 

€e 

which are  consistent with Eqs. 6 ,  7 and 9 for the values 

T =: 580°K (p = 2.25 t o r r )  
R T = 1800°K. T = 700aK, 

e C 

@ = l . 9 0 e V P  V = 0.38  eV 
C 

@ = 2.60 eV, 
e C 

( P A )  = 2 . 0  mi l - tor r  

11-5 
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C. 

the analytical  model satisfactorily correlates  the experimental  var iables .  

Comparison with Basic Physical Constants - The foregoing has  shown that 

A 

more  c r i t i ca l  t es t  of the model is the extent of quantitative agreement  of the c o r -  

relation constants with those computed from the physical p roper t ies  of the ces ium 

atom. 

1. Electron Mean F r e e  Pa th  h - Table I compares  the value of (pX) 

obtained h e r e ,  and the associated electron-atom collision c ross -sec t ion  CJ = 

kT / ( P A ) ,  with values reported o r  estimated by others  

electron te  mpe r a  tur  e s . 
5 

for  the same  region of 
0 

TABLE I 

Source 0 (A2) pX (mi l - tor r )  

P r e s e n t  value 5 00 2 . 0  

400 1.6 Nottingham 

400 1 . 6  a 
Warner  & Hansen 

300  1 . 2  Boekner & Mohler 

Stone & Reitz' 450 1. 8 

500 2 . 0  Robinson 

G a r r e t  & MannC 650 2 . 6  

a 

b 

C 

a = est imated most probable value 

b = experimental  

c = theoret ical  

I 

A s  may be seen ,  the value (pX) =: 2 .  0 mi l - tor r  is quite c lose to the most  

probable value,  and f a l l s  well within the region of uncertainty. I 
2 .  Collector Sheath Height V-- I t  i s  shown in Appendix C that V should 

L c 
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be  approximately proportional to electron temperature  T The values of V = 

3 and c - 3 ,  thzt t h e  

effective thickness of the collector sheath remains constant a2 about N 

Debye lengths, a quite satisfactory result. 

E C  C 

0.38 e v  and T -0.4 e V  cbszrved h e r e  hip ly ,  thrcugh E q a .  Ee 
2 

3 .  Electron Tempera ture  T - It i s  shown in Appendix D that the elec-  Ee 
tron temperature  required to produce the ions diffusing out of the plasma i s  

independent of cu r ren t  J as  observed in F i g .  6 .  F u r t h e r m o r e ,  the required 

electron temperatures ,  computed using the probable values ' of the ionization and 

diffusion c r o s s  sections,  a g r e e  well with those observed he re ,  and approximate 

the observed dependence on pd. 

7 S 

In view of this agreement ,  it appears that for  pract ical  purposes the 

electrode spacing d can be identified with the width of the ion generation region 

d A ,  and the electron temperature  T 

a ture  can be eliminated f rom Eq. 1 since, using Eq. D-3 ,  

with T a Accordingly, the electron temper-  
Ee € 

111. Obstructed Mode of the Discharge 

A .  Analytical Model - 
is  increased ,  V is decreased,  and this power must eventually fall below that 

e 
required to  maintain the high electron temperature sustaining the plasma under 

the conditions in Fig.  3a. I t  i s  evident f rom observed data such a s  Fig.  4, and 

f r o m  the energy balance considered i n  Appendix E ,  that the plasma can continue 

to exist  through impact ionization a t  still  higher V only i f  a cer ta in  minimum 

The power input to the plasma is J (Vt 2kT) .  As  V e e 
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1 
emi t te r  sheat height V '  i s  maintained. This  resu l t s  in the situation in Fig.  3c ,  e 
where a space charge b a r r i e r  exists a t  the emit ter  of sufficient height to 

maintain this  minimum value of V "  for  V>V' = ae- q C t  V - V 4  . 
c e  e 

The region BC of Fig.  2, where this ba r r i e r  exis ts  and thus l imits the electron 

emission cu r ren t  f r o m  the emi t t e r ,  i s  designated a s  the "obstructed mode". 

In the obstructed mode, the saturation electron emission cur ren t  J in 
S 

Eq. 1 is replaced by the cur ren t  J "  emitted over the new b a r r i e r  of height V-V', - 
and V is replaced by V";  so Eq. 1 becomes 

e e 

fo r  V>V'  

where J' is the value given by Eq. 1 with V = V'. 

nated B in Fig.  2 and il lustrated in F i g .  3b, i s  of considerable pract ical  signifi- 

cance since maximum power output typically occurs  there .  It usually is readily 

identified in experimental  output character is t ics  as  a point of inflection. 

The transition point V', desig- 
e e  

B. Analysis of Data - Values of V e  a r e  most  easily obtained f rom such 
e 

directly observed values of V'. 

t e r i s t ics  on a log plot and identify V *  as the point of intersection between a linear 
1 extrpolation of the obstructed mode (slope = -) and of the saturation mode 

kT 
1 e 

(slope M -). Values ofv'obtained from the data in  F i g .  4, using thevalues  

Values ob- 

A more prec ise  method i s  to plot the J - V  cha rac -  

kT e 
an2 V determined in Section 11-C-3, a r e  shown in Fig.  9. 

of @e' GC C 

tained s imi la r ly  f r o m  other data a r e  included in F ig .  9 ,  showing that V "  (pd) is 

essent ia l ly  independent of pressure  and @ - @ . 
e c  

e 
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G .  Comparison with Physical  Model - The electron energy balance for the 

plasma i s  shown in Appendix E to enforce a unique relationship between V and pd. 

In the saturation mode, where V is  dependent on V ,  a large par t  of the energy 

input to the plasma is  returned to the emitter by the electrons back-scat tered 

f r o m  the p lasma,  due to the d i rec t  communication between emit ter  and plasma. 

As  a resu l t  I both electron temperature  T and plasma s ize  d'can remain  r e l a -  

tively constant over a wide range of V. In the obstructed mode, however, the 

dark  b a r r i e r  region between the emitter and bright plasma (Fig. 3c) greatly r e -  

duces both the emission into the plasma and t h  amount of high energy electrons 

back-reflected to the emi t te r  f rom the plasma. The value of V' which charac-  e 
te r izes  the obstructed mode, therefore ,  is independent of cu r ren t ,  as given in 

Eq. E-5 ,  and has  the computed dependence on pd shown in  F ig .  8 ,  using Eqs. 

D-3 and D-4. 

e 

e 

E 

The value of C which bes t  fits the data in Fig.  8 corresponds to a value 

for  the ra t io  

far different f rom the estimated 

considerable uncertainty in this value, the disagreement  is  well outside the prob- 

able range of e r r o r ,  

disagreement .  

of excitation and ionization c r o s s  section of K /KwO. 3,  which is x 1  7 most  probable value of 18. While there  i s  

Future  work w i l l  at tempt to determine the cause of this 

IV.  Bal l -of-Fire  Mode. In the obstructed mode, the energy requirements  of the 

p lasma imposed by Eq. E-5  (Fig.  9) a r e  met  for V < V d  through the existence of 

an  energy b a r r i e r  a t  the emi t te r  of sufficient height to accommodate the required 

emi t te r  sheath V' associated with electrode spacing d. 

which the discharge can sat isfy E-5 is  to exis t  with a n  emi t te r  sheath of height 

v = V" associated with a smal le r  d;  i. e. , the plasma occupies only a smal l  p a r t  

of the interelectrode space with an effective plasma width of d"<d.  

e e  

An al ternate  mode by 
e 

e e  
Visual o b s e r -  
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, 

vation of the discharge shows that such a condition occurs  in the region BE of 

the output charac te r i s t ics  as  shown in Fig. 2 .  

mode of the discharge is  of only academic in te res t  since i t  occurs  in a region of 

inefficient power generation. 

cription will  be given in the forthcoming Annual Report .  

This wel!-kiic;wn "ba!!-cf-fire" 

Photographic evidence supporting the above des -  

V. Extinguished Mode. Eq. 1 has been shown previously8' 9t0 a l so  descr ibe the 

extinguished mode for  ion r ich  emission.  as shown in F ig .  3e and identified a s  

region F D  in Fig.  2 .  

pendent of V and pd ,  now having the form 

In this case  the emitter sheath height i s  essentially inde- 

V = kT i n @  
e e 1 - 

3 
L. 

where B =(E) '! is the ion r ichness  ratio.  The collector sheath height now 

depends on V to sat isfy Eq. 4,  and kT kT- kT . 
S 
J 

E e  E C  e 

VI. Summary. A coherent formal i sm has been obtained which descr ibes  most of 

the phenomenology of the cesium diode discharge,  and which co r re l a t e s  the v a r -  

iables satisfactorily for  the severa l  cases  analyzed to date. Fu r the rmore ,  the 

correlat ing constants agree  well with those computed f rom basic physical con- 

s tan ts ,  with a single notable exception. 

ali ty of this  fo rma l i sm over a grea te r  range and variety of experimental  var iables  
2 (e. g. the effect  of collector temperature ) *  An at tempt  a l so  will be made to ove r -  

come the weaknesses presently apparent in the analytical  model. 

Future  work will further t e s t  the gener-  
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C I N E ~ R I N G  C O R P O R A T I O N  

The usefulness of the pa rame t r i c  studies,  which fo rm an important 

pa r t  of this program,  is great ly  enhanced if  experimental  resu l t s  can be 

anticipated to some extent. 

s impler  to formulate a relationship among a number of variables if a 

rough idea is available of what the relationship is. Based, therefore ,  

on past  experience and the guidance of the analytical work of this program,  

a f ramework  has  been constructed which gives a rough idea of what 

is to be expected f r o m  the paramet r ic  experiments.  

has  the f o r m  of maps of current-voltage charac te r i s t ics  and power 

charac te r i s  tics for  the rhenium-molybdenum system. 

based on the propert ies  of the electrode ma te r i a l s  and correlat ions of 

the different var iabies  affecting the conversion process .  

correlat ions a r e  quite exact and well-known. 

and inaccurate and, in fact ,  constitute the object of much of the experi-  

mental  work that is car r ied  on i n  this program. 

is that at leas t  an order-of-magnitude answer is available with which to 

gauge experimental  resu l t s  that a r e  obtained, and a l so  to anticipate 

t rends and dependencies among the variables.  

T o  put i t  more direct ly ,  i t  is significantly 

This f ramework 

These maps a r e  

Some of these 

Others  a r e  ra ther  vague 

The resul t ,  however, 

To  construct these performance maps,  the following relationships 

were  used: 
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The work function of the rhenium surface in therms of the rat io  of 

sur face  to reservoi r  temperature .  

page 111-12. ) 

(See Table of Nomenclature on 

$e = -. 106 Te/TR (T,/TR - 19. 86) - 2. 821 

This equation is a f i t  of the data shown in F igure  111-1. 

The cesium p r e s s u r e  is given in t e r m s  of the reservoi r  tempera-  

tur e by: 

The out1 t c  

8. 91 x l o 3  

TR 
e 

2"  45 x lo8 P =  c 
i r rent  is given in t e rms  of work func 

temper a tur  e by: 

11.6 l o 3  ,#, 1 

ion and emittei- 

1 
x -  2 

\ e I 

The cesium gas conduction is given in t e r m s  of emit ter  tempera-  

tu re ,  collector temperature ,  spacing, and cesium p res su re  by: 

5 . 2 5  x (T  - T ) a =  e C c s  
1.15 x 10-L(T + Tc)  

P 
e 

2. 5d + 
The internal voltage drop is given in t e r m s  of the product P d  by: 

3 
V = {  [ ( P d  - 213)Pd + 8  x 10 ] P d  x . 7 5  x + .  535 

d 
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The output voltage corresponding to the output cur ren t  J is given 
m 

by: 

e 
T 

In J / J s  m 
v = g  - $  - v  t- 

e C 11. 6 x 10 

The power a t  the electrodes is given by: 

P = V J  e l  m 

The heat l o s s  other than lead conduction is given by: 

1 
Q = J  4 l n - t  Q t Q  m e  2 rad c s  

The efficiency to a f i r s t  approximation is equal to: 

e i  T =  - 
P 

Q 

The following relationships exis t  among the e lec t r ica l  and thermal  

lead lo s ses  and converter propert ies .  

= S C J  lead m P 

*lead m 

P - P  P 

= C/S J 

out = el lead 

out 
2 

P 
- -  out 

P 

“lead 

- - 
%Pt 
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i where 

C =,,,/P - k(T - T ) 
e c  

and 

Based on these relationships,  a program was writ ten,  and a G. E. 

225  computer was used to solve for the unknowns in t e r m s  of selected 

values of the independent variables.  

emi t t e r  temperature ,  collector work function, r e se rvo i r  temperature ,  

a n d  spacing. The solutian-is real ly  the constant-spacing envelope; i, e. , 

the imaximuni cur ren t  obtainable a t  a given voltage for fixed spacing and 

emi t te r  temperature.  F igure  111-2 i s  a typical run. At the top of the page 

the chosen val ues of emit ter  temperature  a n d  collector work function a r e  

shown. Next, cesium rese rvo i r  and spacing values a r e  selected. The 

remaining variables a r e  computed f r o m  the relat ionships  previous ly d e -  

scribed. If, however, the product P d  turns  out to be l e s s  than 10, a 

minus sign is placed in  front of the spacing value to indicate that the 

computation is  invalid, since the internal voltage drop correlation does 

not hold. Figure 111-3 is a summary  a t  each spacing value computed in  

F igure  111-2. 

efficiency and power points a t  each spacing and computing the output 

charac te r i s t ics  f o r  a C s  p res su re  above and below the optimum point. 

Ca re  was exercised to wr i te  the program in such a manner  that new 

relationships among the var iables ,  which a r e  expected to develop, can 

easi ly  be incorporated,  

The independent variables a r e  : the 

The summarizing process consis ts  of selecting the maximum 



T H E R M 0  E L E C T R O N  
E N G I N E E R I N G  C O R P O R A T I O N  

The computer solutions have been plotted in the f o r m  of output cu r -  

rent versus  output voltage. A typical ~ r l a p  is showii iii Figure 111-4. 

s o l i d  l ines a r e  l ines of output for a fixed collector work function value. 

The collector work function values shown range f rom 1. 5 ev  to 1. 8 eV. 

The emit ter  temperature  and spacing a r e  fixed for the map and a r e  

2000°K and 2 mils, respectively. Each solid line i n  the map, c o r r e -  

sponding to a work function value, i s  the maximum output obtainable with 

a given emit ter  temperature  and spacing, and collector work function, 

if a l l  other variables a r e  optimized. 

The 

To the right of the plot, the cesium reservoi r  temperature  neces-  

s a r y  to achieve this output is shown, and, in the form of dotted l ines 

crossing the solid l ines,  l ines of constant collector temperature  a r e  

shown. 

F r o m  the data of Figure 111-2 the map of F igure  111-5 has  been con- 

structed.  Here,  again, the solid lines are  lines of constant collector 

work function. Lines of constant cesium reservoi r  temperature  a r e  

shown as dotted l ines,  a n d  l ines of constant collector temperature  a r e  

identified. 

It should be noted that the analysis used in this p rogram is not valid 

f o r  instances where the C s  pressure-spacing product is below 10 mil- torr .  

The plots,  therefore ,  a r e  limited to the regions where the product, Pd ,  

has  values above 10. 

tu res  f r o m  1600°K to 2000°K in 100" s teps  f o r  spacings of 1, 2,  5, 

10 and 20  m-ils, whenever the pressure-spacing product is above 10. 

Solutions have been obtained for  emit ter  tempera-  

111- 5 



The collector work function range is f rom 1. 5 to 1, 8eV in 0. 1-V 

steps.  

they will be compared with these solutions. 

in the analysis  and in the correlations that resulted in these computer 

solutions a s  becomes necessary  in the light of the experimental  resu l t s .  

As  paramet r ic  power data become available in the program,  

Adjustments will be made 
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0.025732.5 
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Figure 111-3, Typical Data Summary from Computer 111-9 
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CHAPTER IV 

EXPERIMENTS WITH CESIUM FLUORIDE 

The work reported in this chapter i s  the f i r s t  experimental  phase of 

the additive program which wi l l  attempt to thoroughly document the effect  

of a l f sur face"  additive upon the performance of a cesium thermionic 

converter . 

This  s e r i e s  of experiments examines the behavior of the work function 

of a tungsten emi t te r  surface a s  the coverage of the surface by cesium 

fluoride (in the absence of cesium) is varied by controlling the tempera-  

ture  of the cesium fluoride reservoi r .  

provide sufficient data for  the development of a graphical represenation 

of the relationship between the work function of the surface ($ ), the 

surface temperature  (T  ) and the temperature  of the additive (T  ). E A 
Similar  maps have been developed for the cesium only system. 

The experimental  work i s  to 

E 

This documentation should make i t  possible to predict  the emission 

proper t ies  of the surface when covered by both cesium and cesium f luor-  

ide. Such prediction would, of course,  make use of the cesium only data 

a s  wel l  a s  the cesium fluoride data. 

plus ces ium fluoride in  the converter will then be performed to ver i fy  

the predictions. 

Fu r the r  experiments using cesium 

In  addition to the "equilibrium" experiments  described above, a 

study of t ime dependent phenomena has  shown that appreciable delays in 

work  function change occur with certain variations in surface and addi- 

tive tempera tures .  Such effects severely limit the extent of experimental  

d a t a  which can be obtained in  a given period and may be a ve ry  significant 

IV-  1 
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a r e a  of investigation. 

EXPERIMENTAL PROCEDURE 

T e s t  Vehicle 

The tes t  vehicle with molybdenum collectors and tungsten emi t te r  

used in these experiments  has  been described in the second quarter ly  

report .  However , the outgassing schedule was modified to eliminate 

any possible contamination due to water contained in the cesium fluoride 

pellets.  Two tes t  outgassing setups, Figure IV-1 , were  constructed 

and the p re s su re ,  temperature ,  and t ime charac te r i s t ics  of the pellets 

were  determined. 

vacuum sys tem a s  no pellets were  found in  the pinched-off tube. 

the second sample,  with the outgassing profile shown in  Figure IV-2 ,  

the fluoride was heated to over 300°C to be s u r e  all the water  

was driven off. 

When the p r e s s u r e  remained steady a t  10 

with the pellets was pinched off. 

to a g lass  j a r  and examined for any lo s s  in  volume. Since they appeared 

to be intact except for  a brownish discoloration, this schedule was adop- 

ted for  the outgassing. 

The f i r s t  sample was apparently sucked into the 

In 

Considerable outgassing was observed even above 100°C. 
-6  

t o r r ,  the copper tubing 

The pellets were  then t ransfer red  

In charging the tes t  vehicle with the cesium fluoride,  a flow of 

a rgon  was maintained down through the cesium tubulation, through the 

vehicle,  and out the fluoride reservoir .  The pellets were  dropped into 

the r e se rvo i r  and the tubulation was connected to the ion pump. At this 

t ime the cesium tubulation was pinched off and the vacuum pump s ta r ted ,  

thus minimizing the exposure of the fluoride to air. 

ceeded with the cesium fluoride reservoi r  a t  300°C and the cesium 

Outgassing then pro-  

IV -2 



I r e se rvo i r  at 400°C to be su re  that a l l  gas ses  were  cleaned up. The con- 

v e r t e r  was then pinched 

Testing 

To sekve a s  a con 

off and set  up for  testing. 

ro l  for the additive experiments ,  he 'I bar  e '' 
work function of the tungsten emit ter  surface was determined a t  

s eve ra l  temperatures .  These runs were  made while keeping the col- 

lector  and guard a t  200°C and the cesium and cesium fluoride r e s e r -  

vo i rs  a t  140°C. 

guarded collector work function instrumentation, which has  been 

described in the second quarterly.  

to m e a s u r e  cur ren ts  a s  low a s  0. 5 pa with an emi t te r  temperature  of 

1700°K. 

eliminated f r o m  the measurements .  

The J ve r sus  V curves were  measured using the 

This equipment made i t  possible 

Because of the guarding the effects of s t r ay  leakages were  

The additive was introduced into the tes t  vehicle by raising i t s  

r e se rvo i r  temperature  and maintaining the collector and guard a t  an  

equal or  grea te r  temperature .  

ces ium fluoride considerable delay was expected in establishing the 

desired p res su re  throughout the device. 

en t i r e  collector-guard s t ruc ture  w a s  t reated a s  the r e se rvo i r  and main- 

tained a t  near ly  the fluoride temperature.  

value were  monitored on a s t r i p  chart  recorder .  

t raced  f o r  s eve ra l  different emit ter  tempera tures  a t  each  of severa l  

r e s e r v o i r  temperatures .  

during the attainment of equilibrium. F r o m  these curves ,  shown in 

Appendix G,  the work functions for  the var ious conditions may be 

Because of t h e  low vapor p r e s s u r e  of 

To speed up this process  the 

Any t ime effects in cur ren t  

J - V  curves were  

T r a c e s  were  a l so  obtained a t  various t imes 

ca!cz?atecl i iaing the Richardson  z y m t i m .  

IV - 3  
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I RESULTS 

I 
Steadv State 

The work function data obtained f r o m  these experiments  a r e  s u m m a r -  

ized in  F igure  IV-3 .  

but as indicated by the changing values with tempera ture ,  some additive 

The supposedly bare  data is shown by the solid dots; 

is probably present. 

only a slight trend towards higher work functions with increased additive 

coverage (represented by higher values of T and/or  lower values of T A E 
can be seen. 

effects. 

produced the resu l t s  shown in Figure IV-4 .  

visible and indicates a strong correlation between additive coverage and 

work function. 

r e s e r v o i r  temperature  coincide with those for  67 3°K r e se rvo i r  indicat- 

ing that equilibrium may not have been reached since these points were  

taken only a few hours  af ter  the reservoi r  tempera ture  was raised. 

ditional experiments will be necessary  to c lar i fy  the behavior for this 

r e s e r v o i r  temperature .  

replotted with T / T  a s  the abscissa .  These points do not f o r m  a 

single curve,  indicating that the dependence of work function on fluor- 

ide tempera ture  is not as simple a relationship a s  the one for  cesium, 

However, with the limited data a t  this point no definite conclusion can 

be reached. 

The values shown have considerable sca t te r  and 

) 

On the figure all values were  plotted regard less  of t ime 

Taking only those points corresponding to long equilibrating t imes 

Here a definite trend is 

The two lower emit ter  tempera ture  points f o r  7 7 3 ° K  

Ad- 

Figure IV-5  shows the data of F igure  I V - 4  

E A  

Time  Effects 

During testing, whenever emitter or  r e se rvo i r  tempera tures  were  

IV -4 
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changed, 2 significznt delay t i l r , ~  2 n n n a v n d  hpfore thp J - V  Ci.irves became -rr--- -- ----- 
stabilized. 

a s  ver t ical  se t s  of points a t  constant T 

Several  s e r i e s  of such delays a r e  indicated on Figure  IV-3  

E' 

To give added confidence in  the conditions and data on t ime effects 

the following check was made. 

held a t  a low value and the emit ter  temperature  was raised. 

for  surface work function were then taken a t  intervals  until equilibrium 

was reached. Calculation of the work function for  these runs shows that 

the values of 4 were  initially high but a s  t ime passed and the surface ap- 

proached the Itbare" condition, the value of 4 tended to fall  between 4. 6 

and 4. 9 which i s  the range expected for  bare  tungsten. 

The additive r e se rvo i r  temperature  was 

I - V  curves 

Some of the t ime delay character is t ics  a r e  shown in F igure  IV-6 ,  

IV-7 and IV-8 a s  calculated work function ve r sus  time. After additive 

c=ver=nn * -6- is i n c r e z s e d ,  ei ther  hy  r i i s ing  the r e se rvo i r  temperature  or 

lowering the emi t te r  temperature ,  there  is  an approximately exponential 

approach to the final equilibrium work function value. 

which shows data following an increase in additive temperature  a t  t ime 

z e r o  and a t  constant T 

value. 

c r e a s e s  and the surface becomes covered. 

i l lustrated in Figure IV-7 where T 

z e r o  and the fluoride forced to leave the surface.  

and then approaches a lower value. 

except that a reduction in T 

p r e s s u r e  maintained constant. 

similar. 

In Figure IV-6  

4 is  initially low and comparable to the ba re  

I t  then becomes higher as the additive p re s su re  in the tube in-  
E '  

The r eve r se  process  is 

was rapidly increased a t  t ime E 
At first,  r#~ is high 

Figure  IV-8 is s imi la r  to I V - 6  

was made at t ime ze ro  and the additive 

The effects in the two figures a r e  
E 

IV-5 
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Figure  IV-9  is a semi-log plot illustrating the relative time constants 

of the work function changes. 

obtained indicating an exponential behavior. 

In most ca ses  a s t ra ight  line has  been 

IV-6 



I 

f 

I 

,-i 

i 

~~ 

6 5 - R - 3 - 9 3  
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APPENDIX A 

DIFFUSION OF ELECTRONS THROUGH PLASMA 

8 
This t reatment  is s imi la r  to that  by C. Warner  

A neut ra l  f ie ld-free plasma,  bounded by the emi t te r  and collector sheaths 

for the extinguished mode. 

of height V and V as  in Fig.  3a, i s  assumed.  

sink of e lectrons exis ts  in the plasma 

Since no significant source  o r  e C 

2 
d n  

2 
dx 
- -  - 0  (A-1) 

where n is the density of electrons at a distance x f r o m  the emit ter  side of the 

plasma. The solution of Eq. A-1 i s  

n =  M x t  N (A-2) 

where M and N a r e  constants determined by the boundary conditions. 

At  the emi t te r  side of the plasma (x=O) the electron c u r r e n t  entering the 

p lasma is 

I -  , I  - 
n v  - nev t - J = J (f -3 ( -exp  [-VJk%e]) 

4 2 s  

Simi lar ly ,  at the collector side (x=d),  

(A -3) 

A-1  
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where n and n a r e  the respective electron densit ies at the emit ter  and collector 

edges of the p lasma,  v i s  the average electron velocity, J and J 

pective saturat ion emission cur ren ts  f rom the emi t te r  and col lector ,  J is the net 

electron cu r ren t  received by the collector,  T and T a r e  the respective e lec-  

t ron tempera tures  at the emi t te r  and collector edges of the p lasma,  and k is 

Boltzmann's constant. 

neglected f o r  simplicity here .  

- e C 

a r e  the r e s -  
S c s  

E e  € C  

- 
The variation of v with the electron temperature  is 

The diffusion of the net electron cur ren t  J through the plasma is required by 

Fick ' s  law to be  

where X is the electron mean-free-path. 

Combining Eqs. A-2  through A - 5  gives 

J 
- J = a t b(f) 
S 

(A-5) 

314 
b =  T 

If the collector emission is  negligible, Eq. A - 6  simplifies to the fo rm given 

zs Eq. i in tile text. 
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APPENDIX B 

ELECTRON TEMPERATURE U K O P  ACROSS PLASMA 

A genera l  consequence of electron flow through a plasma is  an  electron 

temperature  gradient. 

ing effects at  electrode surfaces ,  a large heat flux is s imi la r ly  introduced into 

the emi t te r  side of the plasma by the incoming e lec t rons ,  and a large fraction of 

this heat  is removed f r o m  the collector side b y  the outgoing electrons.  F o r  any 

distance x f rom the emit ter  s ide,  where the electron temperature  i s  T I  contin- 
E 

uity of hea t  flow requires  that 

In analogy with the well-known electron heating and cool- 

J ( V t  2 k T ) =  2kT t K (dT/dx) 
C E C  € E €  

This equation s ta tes  that the electron cooling of the plasma a t  the collector side 

equals the heat of t ransport  2kT J due to the net electron flow plus the thermal  

c o n d x t i o n  down a temperature  gradient in the electron gas  of thermal  conductivity 

K . Elementary  kinetic theory gives K = 2kh J for d>>h, where J is  the random 

electron c u r r e n t  density. 

E 

E E r r 
Integration of Eq. B-1 and substitution for  K gives 

E 

V 
T Ee - T E C  = 2 2k (l-exp [-::I) 

Therefore ,  fo r  sma l l  d / h  the electron temperature  approaches uniformity. 

However,  as  dm exceeds J / J ,  the electron temperature  drop a c r o s s  the plasma 

approaches V/2k .  
r 

C 

The heat removed b y  excitation, and the x-dependence of J a r e  neglected in r 
this simplified t reatment .  

B - l  
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APPENDIX C 

HEIGHT OF COLLECTOR SHEATH 

If exp (-V/kT )<< 1, positive ion space charge predominates over  most  of the 
c E C  

collector sheath. 

i t se l f ,  the Langmuir-Child space charge equation gives 

Assuming that ion scattering is insignificant in the sheath 

? =  1c 

1 - 
2 

3 
2 
- 

V 
C - 
2 

W 

where T is the tempera ture  of the collector,  w is  the thickness of the collector 

sheath,  and n, Since the 

collector sheath thickness cannot greatly exceed the Debye length h ,  it is conven- 

ient  t o  express  w in t e r m s  of h ,  

C 

is  the ion density a t  the collector edge of the plasma. 
1c 

where N is the number of Debye lengths in the sheath, Eqs.  C-1 and C-2 combine 

to give 

F o r  p re sen t  p lasma conditions (T-7009K and T =r 2 5 0 O q K ) , A  C % 0.8  N3, and N 
C E C  

E C  
should be near  unity. 

c - 1  
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APPENDIX D 

ELECTRON TEMPERATURE REQUIRED TO SUSTAIN 
THE IGNITED MODE 

The r a t e  at which ions a r e  produced in a gas  f rom impact ionization by an 

electron gas  at  temperature  T i s  
E 

where n. and n a r e  respectively the ion and electron densit ies;  p ,  T ,  M and Y 
a r e  respectively the p r e s s u r e ,  t empera ture ,  atomic mass  and ionization energy 

of the gas ;  m is the electron mass ;  K.  is the initial ra te  of increase  of ionization 

c r o s s  section 0. with electron energy U above the threshold,  L e . ,  K.= 

This equation a s s u m e s  that the density of excited atoms is much l e s s  than the gas  

density. of such a plasma,  fo r  a symme- 

t r i ca l  one-dimensional sys tem,  has  been shown to be 

1 E 0 1 

1 

do./dU 
t 1 ( 1 x = u *  1 

The rate  at which ions leave unit a r e a  
6 

fo r  X?>d’ 
1 

1 - 
p. = 0 . 8 9 5 n k ( 2 s  $ kT 

1s Pq 
f o r  X.<<d’ 

1 

Where X. is the ion mean-free-path,  q is the c r o s s  section for ion diffusion 
i 
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through the plasma,  and d’ is the effective width of the ion generation region. 

Because of the large electron temperature drop a c r o s s  the plasma (Appen- 

dix B ) ,  most  of the ions a r e  produced on the emi t te r  side of the p lasma,  so it is 

assumed that most  ions leave the plasma a t  the emi t te r  side. Accordingly, at 

steady s ta te ,  the ra te  a t  which ions leave the plasma a t  the emi t te r ,  p o r  b. , 

must  equal the total r a t e  of ion production per  unit a r e a  of plasma,  
1L 1s 

a Therefore ,  Eqs. D - 1  and D-2 combine to give 

Y 
1 kT = 

E Pn(BLpd’) 

o r  
Y 
1 

k$= 2Pn (B pd^)  
S 

1 

for  h. <<d’ 
1 

03-31 

2 0 2 B 

The value K .=  4 A  /eV and q = 1200 A , used to compute the values of B and B 
1 -7 L S 

I 
shown, have been estimated by Houston to be the most  probable. The uncertain- 

t i es  introduced by the unsymmetr ical  plasma, the non-uniform electron tempera-  

tu re .  and the relation of d to d’, a r e  probably no g rea t e r  than the combined un- 

cer ta in t ies  in these values. 

quite insensit ive to  the value of B o r  d ”  for  pda>> 10 mi l - tor r .  

In any event, the computed electron temperature  i s  

S 
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APPENDIX E 

ENERGY BALANCE FOR PLASMA 

Equating energy input and energy loss for  the plasma gives 

J ( V t 2 k T )  = J (Vt2kT  1 t (J-J)(V+ZkT ) t epxV, 
s e  e C E C  s e Ee 

The first  three  t e r m s  a r e  the energies  ca r r i ed  into and out of the plasma by the 

electron cu r ren t s  identified in F ig .  3a. 

f r o m  the plasma by the cu r ren t  of excited atoms p o r  their  decay photons, where 

V i s  the excitation energy, 

Eq. D-1 with V substituted in place of V ,  and the analogous quantity K 

Ac cording ly , 

The las t  t e r m  is the energy removed 

X 

The ra te  of production of excited atoms is given by 

f o r  K . 
X 

X 1 X i 

V 

'x 

'i 

x 
K 

i 
K 
- 

X 
2 t  - 

kT 

v: 
E 

1 

2tkT 
E 

If the Langmuir double sheath relation holds a t  the emi t te r  

(E -2) 

E -1 
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Eqs .  E-1 to E-3  combine to give 

J 

e Ee E J 
V = (2kT - 2 k T )  - S t C [B, p 

V 

Y 
1 

where C = 

E 

and B and d' a r e  defined in Appendix D (Eq. 0 - 4 ) .  

Eqs.  1 , 3 ,  and 11, Eq. E-4  enforces a unique relationship between V and pd'. 

In view of the relations in  
S 

e 

F o r  the obstructed mode, as  discussed in the text,  the fraction of back- 

reflected cu r ren t  f rom the bright plasma which reaches  the emi t te r  becomes 

negligibly smal l ,  eliminating the t e r m  in J - J in Eq. E-1. 

becomes 

Eq. E - 4  then 
S 

V"= 2kT - 2 k T +  C 
e E e 03-51 

E -2 



The program cal ls  for a la rge  number of I-V fami l ies ,  and a substan- 

tial number have been taken during the th i rd  quar te r .  

sample s e t  of data for  th ree  families of I-V charac te r i s t ics  taken with 

spacing a s  the pr imary  var iable .  

below. 

We include he re  a 

The conditions for  each family a r e  l is ted 

All  data is for  the tube containing emi t te r  R16. 

Fami ly  # 

4 

TE 

C 0 

1485 

1485 

1600 

e 0 

350 

400 

400 

TR 

e 0 

272 

333 

308 

~ 

Spacing 

mils 

1,  2 ,  4 ,  8, 16, 24, 32, 
48, 64, 80 

1, 2 ,  4 ,  8, 16, 24, 32, 
48 ,  64, 80 

1, 2 ,  4 ,  8 ,  16, 24, 3 2 ,  
64,  80 

F-1 



i -- 
Q .I 

L 
I. - 
, '  , 

0 



.. . .. . .- . 

I 

Y 

N 

E u 
\ 

3 



., . ., .. ,_. , - 
" P , . .  

Output Voltage volts 



I 





I 
I 

0 

(t. 

h 

I 
l e  

I 
I 
I 

I 
I 

i 

I 
i 

I t i  

I 

I Output Voltage, volts 



.'* 

, i' 

I Output Voltage,  volts 





’ \  Output Voltage, volts 
%+a* 



I 

I 





0 
i 

5' 

Output Voltage, volts 





0 

Output Voltage, volts 
.. I 



output Voltage, volts 



Output Voltage, volter 



=' . 

,- I- + . t ,, 
. .  

. . _  
Output Voltage, volts 



0 

' .  , 

L -  

O 

. . . .  
I 

Output Voltdge , volts 
, 



0 

C 

c, 
C 
0)  
k 
k 

-3 -- u 

output  V o l t a g i  volts 
P 



I -  , 

gc 

0 



0 

: .* 
. .  

x' 

Output Voltage, volts 
I 



0 

. .. 

. .  , .. 

, .  . .. . .  - .  - 2 .  

0 

Output Voltage, volts 





0 

N 

k e 

0 



0 

(v 

E 



> I  . .  .. . i -  b .  . .  
. .  i 



0 

N 





C 

. .  

P 4 

E 
0 

0 

e 



m 

t! a 

1 u 

I 
3. I 

... 

T I  

k 
-4 

cd s: u 
r> 

1 
Y 



m 



APPENDIX G 

SELECTED ORIGINAL DATA FROM CESIUM FLUORIDE EXPERIMENTS 

This  appendix contains selected I-V charac te r i s t ics  which were  used 

to  determine the surface work function of the tungsten emit ter  as described 

in  Chapter IV. 

were  taken over a n  interval of t ime beginning with the curve marked A .  

Those runs showing curves with a.lphabetica1 identification 
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