17,296 research outputs found
Geometric quantization of Hamiltonian actions of Lie algebroids and Lie groupoids
We construct Hermitian representations of Lie algebroids and associated
unitary representations of Lie groupoids by a geometric quantization procedure.
For this purpose we introduce a new notion of Hamiltonian Lie algebroid
actions. The first step of our procedure consists of the construction of a
prequantization line bundle. Next, we discuss a version of K\"{a}hler
quantization suitable for this setting. We proceed by defining a
Marsden-Weinstein quotient for our setting and prove a ``quantization commutes
with reduction'' theorem. We explain how our geometric quantization procedure
relates to a possible orbit method for Lie groupoids. Our theory encompasses
the geometric quantization of symplectic manifolds, Hamiltonian Lie algebra
actions, actions of families of Lie groups, foliations, as well as some general
constructions from differential geometry.Comment: 40 pages, corrected version 11-01-200
Measurement of turbulent correlations in a coaxial flow of dissimilar fluids
Axial turbulence measurements in coaxial flow of dissimilar gase
Observing Gravitational Waves with a Single Detector
A major challenge of any search for gravitational waves is to distinguish
true astrophysical signals from those of terrestrial origin. Gravitational-wave
experiments therefore make use of multiple detectors, considering only those
signals which appear in coincidence in two or more instruments. It is unclear,
however, how to interpret loud gravitational-wave candidates observed when only
one detector is operational. In this paper, we demonstrate that the observed
rate of binary black hole mergers can be leveraged in order to make confident
detections of gravitational-wave signals with one detector alone. We quantify
detection confidences in terms of the probability that a signal
candidate is of astrophysical origin. We find that, at current levels of
instrumental sensitivity, loud signal candidates observed with a single
Advanced LIGO detector can be assigned . In the future,
Advanced LIGO may be able to observe single-detector events with confidences
exceeding .Comment: 8 pages, 4 figures; published in CQG; minor updates to match
published versio
Observation of B_s Production at the Y(5S) Resonance
Using the CLEO detector at the Cornell Electron Storage Ring, we have observed the B_s meson in e^+e^- annihilation at the Υ(5S) resonance. We find 14 candidates consistent with B_s decays into final states with a J/ψ or a D_s^((*)-). The probability that we have observed a background fluctuation is less than 8×10^(-10). We have established that at the energy of the Υ(5S) resonance B_s production proceeds predominantly through the creation of B_s^*B̅ _s^* pairs. We find σ(e^+e^-→B^s^*B̅ ^*)=[0.11_(-0.03)^(+0.04)(stat)±0.02(syst)]  nb, and set the following limits: σ(e^+e^-→B_sB̅ _s)/σ(e^+e^-→B_s^*B̅ _s^*)<0.16 and [σ(e^+e^-→B_sB̅ _s^*)+σ(e^+e^-→B_s*B̅ _s)]/σ(e^+e^-→B_s*B̅ _s^*)<0.16 (90% C.L.). The mass of the B_s^* meson is measured to be M_(B_s^*=[5.414±0.001(stat)±0.003(syst)]  GeV/c^2
Two-photon width of the charmonium state X_(c2)
The two-photon width of X_(c2)^3P_2 state of charmonium has been measured using 14.4 fb^(-1) of e^+e^-data taken at √s
=9.46–11.30 GeV with the CLEO III detector. The yy-fusion reaction studied is e^+e^- → e^+e^-yy, → yy X_(c2) → yJ/Ψ → ye^+e^-(µ^+µ^-). We measure Г_(yy) (X_(c2))B(X_(c2)) → y
J/Ψ)B(J/Ψ → e^+e^- + µ^+µ^-)= 13.2 ± 1.4(stat)± 1.1(syst) eV, and obtain Г yy(Xc2)= 559 ± 57(stat) ± 48(syst) ± 36(br) eV. This result is in excellent agreement with the result of -fusion measurement by Belle and is consistent with that of the pp → X_(c2) → yy measurement, when they are both reevaluated using the recent CLEO result for the radiative decay X_(c2) → J/Ψ
Charged Rotating Black Holes in Equilibrium
Axially symmetric, stationary solutions of the Einstein-Maxwell equations
with disconnected event horizon are studied by developing a method of explicit
integration of the corresponding boundary-value problem. This problem is
reduced to non-leaner system of algebraic equations which gives relations
between the masses, the angular momenta, the angular velocities, the charges,
the distance parameters, the values of the electromagnetic field potential at
the horizon and at the symmetry axis. A found solution of this system for the
case of two charged non-rotating black holes shows that in general the total
mass depends on the distance between black holes. Two-Killing reduction
procedure of the Einstein-Maxwell equations is also discussed.Comment: LaTeX 2.09, no figures, 15 pages, v2, references added, introduction
section slightly modified; v3, grammar errors correcte
An effectual template bank for the detection of gravitational waves from inspiralling compact binaries with generic spins
We report the construction of a three-dimensional template bank for the
search for gravitational waves from inspiralling binaries consisting of
spinning compact objects. The parameter space consists of two dimensions
describing the mass parameters and one "reduced-spin" parameter, which
describes the secular (non-precessing) spin effects in the waveform. The
template placement is based on an efficient stochastic algorithm and makes use
of the semi-analytical computation of a metric in the parameter space. We
demonstrate that for "low-mass" () binaries,
this template bank achieves effective fitting factors --
towards signals from generic spinning binaries in the advanced detector era
over the entire parameter space of interest (including binary neutron stars,
binary black holes, and black hole-neutron star binaries). This provides a
powerful and viable method for searching for gravitational waves from generic
spinning low-mass compact binaries. Under the assumption that spin magnitudes
of black-holes [neutron-stars] are uniformly distributed between 0--0.98 [0 --
0.4] and spin angles are isotropically distributed, the expected improvement in
the average detection volume (at a fixed signal-to-noise-ratio threshold) of a
search using this reduced-spin bank is , as compared to a search
using a non-spinning bank.Comment: Minor changes, version appeared in Phys. Rev.
- …