567 research outputs found

    Methods for Site-Selective Chemical Pretein Immobilization

    Get PDF
    Els bioxips de proteïnes (micro arrays) requereixen, per a una implementació eficient, d'un desenvolupament de les tècniques d'immobilització de proteïnes.Es comenten diverses aproximacions químiques per tal d’assolir la immobilització de proteïnes d’una manera específica amb enllaços covalents. El desenvolupament en aquesta àrea condueix a millores tecnològiques per al desenvolupament de bioxips de proteïnes

    Evaluation of common supermarket products as positive controls in biochemical methane potential (BMP) tests

    Get PDF
    Biochemical methane potential (BMP) tests are commonly applied to evaluate the recoverable amount of methane from a substrate. Standardized protocols require inclusion of a positive control with a known BMP to check the experimental setup and execution, as well as the performance of the inoculum. Only if the BMP of the positive control is within the expected range is the entire test validated. Besides ignorance of this requirement, limited availability of the standard positive control microcrystalline cellulose might be the main reason for neglecting a positive control. To address this limitation, eight widely available grocery store products have been tested as alternative positive controls (APC) to demonstrate their suitability. Among them, Tic Tacs and gummi bears were very promising, although they are dominated by easily degradable sugars and so do not test for hydrolytic performance. Coffee filters exhibited a similar performance to microcrystalline cellulose, while whole milk might be chosen when a more balanced carbohydrate:protein:lipid ratio is important. Overall, the approach of predicting the BMP of a substrate based on the nutritional composition provided on the product packaging worked surprisingly well: BMP of the eight tested products was 81-91% of theoretical maximum BMP based on nutritional information and generic chemical formulas for carbohydrates, proteins, and lipids

    Power and limitations of biochemical methane potential (BMP) tests

    Full text link
    As energy systems transition toward renewable sources, anaerobic digestion (AD), which can be used to recover energy from organic substrates, is receiving growing attention. AD research and practice both rely on biochemical methane potential (BMP) tests to determine the methane potential of sewage sludge, energy crops and organic wastes (Pearse et al., 2018). In contrast to continuous reactor experiments, BMP tests are batch, and can be conducted without a major investment of equipment, labor and time. However, this and other differences limit the applicability of results from a BMP test to full-scale plant operation. Yet even in the peer-reviewed literature, BMP test results are not always used appropriately. An example is the determination of synergistic or antagonistic effects during anaerobic co-digestion in substrate mixtures. A BMP test is a powerful and useful tool, but it is important to recognize the type of questions that can and cannot be answered with this experimental setup. Clarification of these issues is the objective of the present contribution

    Impact of Storage Conditions on the Methanogenic Activity of Anaerobic Digestion Inocula

    Get PDF
    The impact of storage temperature (4, 22 and 37 ◦C) and storage time (7, 14 and 21 days) on anaerobic digestion inocula was investigated through specific methanogenic activity assays. Experimental results showed that methanogenic activity decreased over time with storage, regardless of storage temperature. However, the rate at which the methanogenic activity decreased was two and five times slower at 4 ◦C than at 22 and 37 ◦C, respectively. The inoculum stored at 4 ◦C and room temperature (22 ◦C) maintained methanogenic activity close to that of fresh inoculum for 14 days (<10% difference). However, a storage temperature of 4 ◦C is preferred because of the slower decrease in activity with lengthier storage time. From this research, it was concluded that inoculum storage time should generally be kept to a minimum, but that storage at 4 ◦C could help maintain methanogenic activity for longe

    An Artificial Intelligence Tool for Accessible Science Education

    Get PDF
    One of the most important issues in accessible science education is creating a laboratory workspace accessible to blind students or students with visual impairments (VI). Although these students are often provided access to the science lectures, they are usually denied full participation in hands-on laboratory work. Current solutions to this problem focus on providing special accommodations such as asking sighted lab partners to complete the hands-on work. Although the accessibility of laboratory devices in modern science education has been improved in recent years, students with VI often remain passive learners. In this work, we developed a new artificial intelligence tool, the MSU Denver Virtual Lab Assistant (VLA), using Amazon Web Services (AWS), Amazon Alexa Skills Kit (ASK), Alexa smart speaker, and a microcontroller (Raspberry Pi). The VLA can be used as a virtual assistant in the lab in combination with other access technologies and devices. The VLA allows students with VI to perform the hands-on laboratory work by themselves simply using voice control. The VLA can be accessed through any smartphone or Amazon Echo device to assist general science lab procedures. The VLA is designed to be applicable to different science laboratory work. It is also compatible with other common accessible electronic devices such as the Talking LabQuest (TLQ). We believe that the VLA can promote the inclusion of learners with VI and be beneficial to general accessible science education work

    Realtime calibration of the A4 electromagnetic lead fluoride calorimeter

    Full text link
    Sufficient energy resolution is the key issue for the calorimetry in particle and nuclear physics. The calorimeter of the A4 parity violation experiment at MAMI is a segmented calorimeter where the energy of an event is determined by summing the signals of neighbouring channels. In this case the precise matching of the individual modules is crucial to obtain a good energy resolution. We have developped a calibration procedure for our total absorbing electromagnetic calorimeter which consists of 1022 lead fluoride (PbF_2) crystals. This procedure reconstructs the the single-module contributions to the events by solving a linear system of equations, involving the inversion of a 1022 x 1022-matrix. The system has shown its functionality at beam energies between 300 and 1500 MeV and represents a new and fast method to keep the calorimeter permanently in a well-calibrated state

    Psychosocial Stress and Prostate Cancer: A Theoretical Model

    Get PDF
    African-American men are more likely to develop and die from prostate cancer than are European-American men; yet, factors responsible for the racial disparity in incidence and mortality have not been elucidated. Socioeconomic disadvantage can lead to psychosocial stress and may be linked to negative lifestyle behaviors. Regardless of socioeconomic position, African-American men routinely experience racism-induced stress. We propose a theoretical framework for an association between psychosocial stress and prostate cancer. With the context of history and culture, we further propose that psychosocial stress may partially explain the variable incidence of prostate cancer between these diverse groups. Psychosocial stress may negatively impact teh immune system leaving the individual susceptible to malingnancies. Behavioral responses to psychosocial stress are amenable to change. If psychosocial stress is found to negatively impact prostate cancer risk, interventions may be designed to modify reactions to environmental demands

    Development and Validation of a Low-Cost Gas Density Method for Measuring Biochemical Methane Potential (BMP)

    Get PDF
    Accurate determination of biochemical methane potential (BMP) is important for both biogas research and practice. However, access to laboratory equipment limits the capacity of small laboratories or biogas plants to conduct reliable BMP assays, especially in low- and middle-income countries. This paper describes the development and validation of a new gas density-based method for measuring BMP (GD-BMP). In the GD-BMP method, biogas composition is determined from biogas density. Biogas density is based on bottle mass loss and biogas volume, and these can be accurately measured using only a standard laboratory scale, inexpensive syringes, and a simple manometer. Results from four experiments carried out in three different laboratories showed that the GD-BMP method is both accurate (no significant bias compared to gravimetric or volumetric methods with biogas analysis by gas chromatography) and precise (<3% relative standard deviation is possible). BMP values from the GD-BMP method were also comparable to those measured for the same substrates with an industry standard automated system (AMPTS II) in two independent laboratories (maximum difference 10%). Additionally, the GD-BMP method was shown to be accurate even in the presence of leakage by excluding leakage from mass loss measurements. The proposed GD-BMP method represents a significant breakthrough for both biogas research and the industry. With it, accurate BMP measurement is possible with only a minimal investment in supplies and equipment
    corecore