1,315 research outputs found
A Circuit Model for Domain Walls in Ferromagnetic Nanowires: Application to Conductance and Spin Transfer Torques
We present a circuit model to describe the electron transport through a
domain wall in a ferromagnetic nanowire. The domain wall is treated as a
coherent 4-terminal device with incoming and outgoing channels of spin up and
down and the spin-dependent scattering in the vicinity of the wall is modelled
using classical resistances. We derive the conductance of the circuit in terms
of general conductance parameters for a domain wall. We then calculate these
conductance parameters for the case of ballistic transport through the domain
wall, and obtain a simple formula for the domain wall magnetoresistance which
gives a result consistent with recent experiments. The spin transfer torque
exerted on a domain wall by a spin-polarized current is calculated using the
circuit model and an estimate of the speed of the resulting wall motion is
made.Comment: 10 pages, 5 figures; submitted to Physical Review
The L1-Potts functional for robust jump-sparse reconstruction
We investigate the non-smooth and non-convex -Potts functional in
discrete and continuous time. We show -convergence of discrete
-Potts functionals towards their continuous counterpart and obtain a
convergence statement for the corresponding minimizers as the discretization
gets finer. For the discrete -Potts problem, we introduce an time
and space algorithm to compute an exact minimizer. We apply -Potts
minimization to the problem of recovering piecewise constant signals from noisy
measurements It turns out that the -Potts functional has a quite
interesting blind deconvolution property. In fact, we show that mildly blurred
jump-sparse signals are reconstructed by minimizing the -Potts functional.
Furthermore, for strongly blurred signals and known blurring operator, we
derive an iterative reconstruction algorithm
Disorder-induced enhancement of the persistent current for strongly interacting electrons in one-dimensional rings
We show that disorder increases the persistent current of a half-filled
one-dimensional Hubbard-Anderson ring at strong interaction. This unexpected
effect results from a perturbative expansion starting from the strongly
interacting Mott insulator ground state. The analytical result is confirmed and
extended by numerical calculations.Comment: 7 pages, 2 figures, LaTeX, using epl.cls (included), considerably
revised final versio
Inclination-Independent Galaxy Classification
We present a new method to classify galaxies from large surveys like the
Sloan Digital Sky Survey using inclination-corrected concentration,
inclination-corrected location on the color-magnitude diagram, and apparent
axis ratio. Explicitly accounting for inclination tightens the distribution of
each of these parameters and enables simple boundaries to be drawn that
delineate three different galaxy populations: Early-type galaxies, which are
red, highly concentrated, and round; Late-type galaxies, which are blue, have
low concentrations, and are disk dominated; and Intermediate-type galaxies,
which are red, have intermediate concentrations, and have disks. We have
validated our method by comparing to visual classifications of high-quality
imaging data from the Millennium Galaxy Catalogue. The inclination correction
is crucial to unveiling the previously unrecognized Intermediate class.
Intermediate-type galaxies, roughly corresponding to lenticulars and early
spirals, lie on the red sequence. The red sequence is therefore composed of two
distinct morphological types, suggesting that there are two distinct mechanisms
for transiting to the red sequence. We propose that Intermediate-type galaxies
are those that have lost their cold gas via strangulation, while Early-type
galaxies are those that have experienced a major merger that either consumed
their cold gas, or whose merger progenitors were already devoid of cold gas
(the ``dry merger'' scenario).Comment: Accepted for publication in ApJ. 7 pages in emulateap
Electron Transport through Disordered Domain Walls: Coherent and Incoherent Regimes
We study electron transport through a domain wall in a ferromagnetic nanowire
subject to spin-dependent scattering. A scattering matrix formalism is
developed to address both coherent and incoherent transport properties. The
coherent case corresponds to elastic scattering by static defects, which is
dominant at low temperatures, while the incoherent case provides a
phenomenological description of the inelastic scattering present in real
physical systems at room temperature. It is found that disorder scattering
increases the amount of spin-mixing of transmitted electrons, reducing the
adiabaticity. This leads, in the incoherent case, to a reduction of conductance
through the domain wall as compared to a uniformly magnetized region which is
similar to the giant magnetoresistance effect. In the coherent case, a
reduction of weak localization, together with a suppression of spin-reversing
scattering amplitudes, leads to an enhancement of conductance due to the domain
wall in the regime of strong disorder. The total effect of a domain wall on the
conductance of a nanowire is studied by incorporating the disordered regions on
either side of the wall. It is found that spin-dependent scattering in these
regions increases the domain wall magnetoconductance as compared to the effect
found by considering only the scattering inside the wall. This increase is most
dramatic in the narrow wall limit, but remains significant for wide walls.Comment: 23 pages, 12 figure
Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Séquard syndrome
Cervical incomplete spinal cord injuries often lead to severe and persistent impairments of sensorimotor functions and are clinically the most frequent type of spinal cord injury. Understanding the motor impairments and the possible functional recovery of upper and lower extremities is of great importance. Animal models investigating motor dysfunction following cervical spinal cord injury are rare. We analysed the differential spontaneous recovery of fore- and hindlimb locomotion by detailed kinematic analysis in adult rats with unilateral C4/C5 hemisection, a lesion that leads to the Brown-Séquard syndrome in humans. The results showed disproportionately better performance of hindlimb compared with forelimb locomotion; hindlimb locomotion showed substantial recovery, whereas the ipsilesional forelimb remained in a very poor functional state. Such a differential motor recovery pattern is also known to occur in monkeys and in humans after similar spinal cord lesions. On the lesioned side, cortico-, rubro-, vestibulo- and reticulospinal tracts and the important modulatory serotonergic, dopaminergic and noradrenergic fibre systems were interrupted by the lesion. In an attempt to facilitate locomotion, different monoaminergic agonists were injected intrathecally. Injections of specific serotonergic and noradrenergic agonists in the chronic phase after the spinal cord lesion revealed remarkable, although mostly functionally negative, modulations of particular parameters of hindlimb locomotion. In contrast, forelimb locomotion was mostly unresponsive to these agonists. These results, therefore, show fundamental differences between fore- and hindlimb spinal motor circuitries and their functional dependence on remaining descending inputs and exogenous spinal excitation. Understanding these differences may help to develop future therapeutic strategies to improve upper and lower limb function in patients with incomplete cervical spinal cord injurie
Romantic and Sexual Intimacy During the COVID-19 Pandemic
Previous studies show that pandemics have an impact on individual’s health, social life, finances, livelihood, and overall well-being. But how do pandemics impact intimacy? Very little research has sought to examine the ways in which a pandemic impacts sexual and romantic intimacy, precisely the aim of this study. Through an online Qualtrics open-ended survey (n=229) and a convenience sample of three in-depth semi-structured interviews, this thesis seeks to answer, “How have people managed romantic and sexual intimacy during the COVID-19 pandemic?” The data collected shows that respondents reported that the COVID-19 pandemic has heightened loneliness and difficulty to engage in both romantic and sexual intimacy, along with an increased craving for non-sexual physical touch. Overall, I found that among my sample, people in committed, cohabitating relationships self-reported being the most impacted by the pandemic. The most common sentiment was that their romantic and sexual satisfaction decreased due to the increased amount of time confined with their partner. People in non-cohabitating, committed relationships self-reported a bit less of an impact, but still experienced strain with not being able to as frequently or readily see their partner in-person. Single participants expressed feeling the least impact, largely because the pandemic did not hinder their romantic or sexual life being that they were single both before the pandemic and during
Recommended from our members
Application of Design of Experiments (DOE) on the Processing of Rapid Prototyped Samples
The purpose of this experiment was to improve the Fused Deposition Modeling Process by
examining the tensile strength of samples fabricated in a Stratasys FDM 1650 Machine utilizing
the methods of Design of Experiments. A two-level, four-factor, full factorial experiment was
conducted. The selected factors were temperature, air gap, slice thickness, and raster orientation.
A regression equation determined the level each factor should be set in order to optimize the
FDM machine settings. It was found that single factors - small air gap, small layer thickness
and low raster orientation, as well as the interaction between high temperature and small layer
thickness yielded the greatest effect the response.Mechanical Engineerin
Transformation of Morphology and Luminosity Classes of the SDSS Galaxies
We present a unified picture on the evolution of galaxy luminosity and
morphology. Galaxy morphology is found to depend critically on the local
environment set up by the nearest neighbor galaxy in addition to luminosity and
the large scale density. When a galaxy is located farther than the virial
radius from its closest neighbor, the probability for the galaxy to have an
early morphological type is an increasing function only of luminosity and the
local density due to the nearest neighbor (). The tide produced by the
nearest neighbor is thought to be responsible for the morphology transformation
toward the early type at these separations. When the separation is less than
the virial radius, i.e. when , its morphology
depends also on the neighbor's morphology and the large-scale background
density over a few Mpc scales () in addition to luminosity and
. The early type probability keeps increasing as increases if
its neighbor is an early type. But the probability decreases as
increases when the neighbor is a late type. The cold gas streaming from the
late type neighbor can be the reason for the morphology transformation toward
late type. The overall early-type fraction increases as increases
when . This can be attributed to the hot halo gas
of the neighbor which is confined by the pressure of the ambient medium held by
the background mass. We have also found that galaxy luminosity depends on
, and that the isolated bright galaxies are more likely to be recent
merger products. We propose a scenario that a series of morphology and
luminosity transformation occur through distant interactions and mergers, which
results in the morphology--luminosity--local density relation.Comment: 14 pages, 7 figures, for higher resolution figures download PDF file
at http://astro.kias.re.kr/docs/trans.pdf ; references added and typos in
section 3.2 corrected; Final version accepted for publication in Ap
A 4D Light-Field Dataset and CNN Architectures for Material Recognition
We introduce a new light-field dataset of materials, and take advantage of
the recent success of deep learning to perform material recognition on the 4D
light-field. Our dataset contains 12 material categories, each with 100 images
taken with a Lytro Illum, from which we extract about 30,000 patches in total.
To the best of our knowledge, this is the first mid-size dataset for
light-field images. Our main goal is to investigate whether the additional
information in a light-field (such as multiple sub-aperture views and
view-dependent reflectance effects) can aid material recognition. Since
recognition networks have not been trained on 4D images before, we propose and
compare several novel CNN architectures to train on light-field images. In our
experiments, the best performing CNN architecture achieves a 7% boost compared
with 2D image classification (70% to 77%). These results constitute important
baselines that can spur further research in the use of CNNs for light-field
applications. Upon publication, our dataset also enables other novel
applications of light-fields, including object detection, image segmentation
and view interpolation.Comment: European Conference on Computer Vision (ECCV) 201
- …