1,406 research outputs found
Signatures of electron correlations in the transport properties of quantum dots
The transition matrix elements between the correlated and
electron states of a quantum dot are calculated by numerical diagonalization.
They are the central ingredient for the linear and non--linear transport
properties which we compute using a rate equation. The experimentally observed
variations in the heights of the linear conductance peaks can be explained. The
knowledge of the matrix elements as well as the stationary populations of the
states allows to assign the features observed in the non--linear transport
spectroscopy to certain transition and contains valuable information about the
correlated electron states.Comment: 4 pages (revtex,27kB) + 3 figures in one file ziped and uuencoded
(postscript,33kB), to appear in Phys.Rev.B as Rapid Communicatio
Inclination-Independent Galaxy Classification
We present a new method to classify galaxies from large surveys like the
Sloan Digital Sky Survey using inclination-corrected concentration,
inclination-corrected location on the color-magnitude diagram, and apparent
axis ratio. Explicitly accounting for inclination tightens the distribution of
each of these parameters and enables simple boundaries to be drawn that
delineate three different galaxy populations: Early-type galaxies, which are
red, highly concentrated, and round; Late-type galaxies, which are blue, have
low concentrations, and are disk dominated; and Intermediate-type galaxies,
which are red, have intermediate concentrations, and have disks. We have
validated our method by comparing to visual classifications of high-quality
imaging data from the Millennium Galaxy Catalogue. The inclination correction
is crucial to unveiling the previously unrecognized Intermediate class.
Intermediate-type galaxies, roughly corresponding to lenticulars and early
spirals, lie on the red sequence. The red sequence is therefore composed of two
distinct morphological types, suggesting that there are two distinct mechanisms
for transiting to the red sequence. We propose that Intermediate-type galaxies
are those that have lost their cold gas via strangulation, while Early-type
galaxies are those that have experienced a major merger that either consumed
their cold gas, or whose merger progenitors were already devoid of cold gas
(the ``dry merger'' scenario).Comment: Accepted for publication in ApJ. 7 pages in emulateap
Voxel-Based Indoor Reconstruction From HoloLens Triangle Meshes
Current mobile augmented reality devices are often equipped with range
sensors. The Microsoft HoloLens for instance is equipped with a Time-Of-Flight
(ToF) range camera providing coarse triangle meshes that can be used in custom
applications. We suggest to use the triangle meshes for the automatic
generation of indoor models that can serve as basis for augmenting their
physical counterpart with location-dependent information. In this paper, we
present a novel voxel-based approach for automated indoor reconstruction from
unstructured three-dimensional geometries like triangle meshes. After an
initial voxelization of the input data, rooms are detected in the resulting
voxel grid by segmenting connected voxel components of ceiling candidates and
extruding them downwards to find floor candidates. Semantic class labels like
'Wall', 'Wall Opening', 'Interior Object' and 'Empty Interior' are then
assigned to the room voxels in-between ceiling and floor by a rule-based voxel
sweep algorithm. Finally, the geometry of the detected walls and their openings
is refined in voxel representation. The proposed approach is not restricted to
Manhattan World scenarios and does not rely on room surfaces being planar.Comment: 8 pages, 4 figure
Normal classification of 3D occupancy grids for voxel-based indoor reconstruction from point clouds
In this paper, we present an automated method for classification of binary voxel occupancy grids of discretized indoor mapping data such as point clouds or triangle meshes according to normal vector directions. Filled voxels get assigned normal class labels distinguishing between horizontal and vertical building structures. The horizontal building structures are further differentiated into those with normal directions pointing upwards or downwards with respect to the building interior. The derived normal grids can be deployed in the context of an existing voxel-based indoor reconstruction pipeline, which so far was only applicable to indoor mapping triangle meshes that already contain normal vectors consistently oriented with respect to the building interior. By means of quantitative evaluation against reference data, we demonstrate the performance of the proposed method and its applicability in the context of voxel-based indoor reconstruction from indoor mapping point clouds without normal vectors. The code of our implementation is made available to the public at https://github.com/huepat/voxir
Length-dependent oscillations of the conductance through atomic chains: The importance of electronic correlations
We calculate the conductance of atomic chains as a function of their length.
Using the Density Matrix Renormalization Group algorithm for a many-body model
which takes into account electron-electron interactions and the shape of the
contacts between the chain and the leads, we show that length-dependent
oscillations of the conductance whose period depends on the electron density in
the chain can result from electron-electron scattering alone. The amplitude of
these oscillations can increase with the length of the chain, in contrast to
the result from approaches which neglect the interactions.Comment: 7 pages, 4 figure
Electron Transport through Disordered Domain Walls: Coherent and Incoherent Regimes
We study electron transport through a domain wall in a ferromagnetic nanowire
subject to spin-dependent scattering. A scattering matrix formalism is
developed to address both coherent and incoherent transport properties. The
coherent case corresponds to elastic scattering by static defects, which is
dominant at low temperatures, while the incoherent case provides a
phenomenological description of the inelastic scattering present in real
physical systems at room temperature. It is found that disorder scattering
increases the amount of spin-mixing of transmitted electrons, reducing the
adiabaticity. This leads, in the incoherent case, to a reduction of conductance
through the domain wall as compared to a uniformly magnetized region which is
similar to the giant magnetoresistance effect. In the coherent case, a
reduction of weak localization, together with a suppression of spin-reversing
scattering amplitudes, leads to an enhancement of conductance due to the domain
wall in the regime of strong disorder. The total effect of a domain wall on the
conductance of a nanowire is studied by incorporating the disordered regions on
either side of the wall. It is found that spin-dependent scattering in these
regions increases the domain wall magnetoconductance as compared to the effect
found by considering only the scattering inside the wall. This increase is most
dramatic in the narrow wall limit, but remains significant for wide walls.Comment: 23 pages, 12 figure
Spin-Blockade in Single and Double Quantum Dots in Magnetic Fields: a Correlation Effect
The total spin of correlated electrons in a quantum dot changes with magnetic
field and this effect is generally linked to the change in the total angular
momentum from one magic number to another, which can be understood in terms of
an `electron molecule' picture for strong fields. Here we propose to exploit
this fact to realize a spin blockade, i.e., electrons are prohibited to tunnel
at specific values of the magnetic field. The spin-blockade regions have been
obtained by calculating both the ground and excited states. In double dots the
spin-blockade condition is found to be less stringent than in single dots.Comment: 4pages, to be published in Phys. Rev. B (Rapid Communication
Spin blockade in ground state resonance of a quantum dot
We present measurements on spin blockade in a laterally integrated quantum
dot. The dot is tuned into the regime of strong Coulomb blockade, confining ~
50 electrons. At certain electronic states we find an additional mechanism
suppressing electron transport. This we identify as spin blockade at zero bias,
possibly accompanied by a change in orbital momentum in subsequent dot ground
states. We support this by probing the bias, magnetic field and temperature
dependence of the transport spectrum. Weak violation of the blockade is
modelled by detailed calculations of non-linear transport taking into account
forbidden transitions.Comment: 4 pages, 4 figure
Influence of nano-mechanical properties on single electron tunneling: A vibrating Single-Electron Transistor
We describe single electron tunneling through molecular structures under the
influence of nano-mechanical excitations. We develop a full quantum mechanical
model, which includes charging effects and dissipation, and apply it to the
vibrating C single electron transistor experiment by Park {\em et al.}
{[Nature {\bf 407}, 57 (2000)].} We find good agreement and argue vibrations to
be essential to molecular electronic systems. We propose a mechanism to realize
negative differential conductance using local bosonic excitations.Comment: 7 pages, 6 figure
- …