1,398 research outputs found

    Signatures of electron correlations in the transport properties of quantum dots

    Full text link
    The transition matrix elements between the correlated NN and N ⁣+ ⁣1N\!+\!1 electron states of a quantum dot are calculated by numerical diagonalization. They are the central ingredient for the linear and non--linear transport properties which we compute using a rate equation. The experimentally observed variations in the heights of the linear conductance peaks can be explained. The knowledge of the matrix elements as well as the stationary populations of the states allows to assign the features observed in the non--linear transport spectroscopy to certain transition and contains valuable information about the correlated electron states.Comment: 4 pages (revtex,27kB) + 3 figures in one file ziped and uuencoded (postscript,33kB), to appear in Phys.Rev.B as Rapid Communicatio

    Inclination-Independent Galaxy Classification

    Full text link
    We present a new method to classify galaxies from large surveys like the Sloan Digital Sky Survey using inclination-corrected concentration, inclination-corrected location on the color-magnitude diagram, and apparent axis ratio. Explicitly accounting for inclination tightens the distribution of each of these parameters and enables simple boundaries to be drawn that delineate three different galaxy populations: Early-type galaxies, which are red, highly concentrated, and round; Late-type galaxies, which are blue, have low concentrations, and are disk dominated; and Intermediate-type galaxies, which are red, have intermediate concentrations, and have disks. We have validated our method by comparing to visual classifications of high-quality imaging data from the Millennium Galaxy Catalogue. The inclination correction is crucial to unveiling the previously unrecognized Intermediate class. Intermediate-type galaxies, roughly corresponding to lenticulars and early spirals, lie on the red sequence. The red sequence is therefore composed of two distinct morphological types, suggesting that there are two distinct mechanisms for transiting to the red sequence. We propose that Intermediate-type galaxies are those that have lost their cold gas via strangulation, while Early-type galaxies are those that have experienced a major merger that either consumed their cold gas, or whose merger progenitors were already devoid of cold gas (the ``dry merger'' scenario).Comment: Accepted for publication in ApJ. 7 pages in emulateap

    Voxel-Based Indoor Reconstruction From HoloLens Triangle Meshes

    Get PDF
    Current mobile augmented reality devices are often equipped with range sensors. The Microsoft HoloLens for instance is equipped with a Time-Of-Flight (ToF) range camera providing coarse triangle meshes that can be used in custom applications. We suggest to use the triangle meshes for the automatic generation of indoor models that can serve as basis for augmenting their physical counterpart with location-dependent information. In this paper, we present a novel voxel-based approach for automated indoor reconstruction from unstructured three-dimensional geometries like triangle meshes. After an initial voxelization of the input data, rooms are detected in the resulting voxel grid by segmenting connected voxel components of ceiling candidates and extruding them downwards to find floor candidates. Semantic class labels like 'Wall', 'Wall Opening', 'Interior Object' and 'Empty Interior' are then assigned to the room voxels in-between ceiling and floor by a rule-based voxel sweep algorithm. Finally, the geometry of the detected walls and their openings is refined in voxel representation. The proposed approach is not restricted to Manhattan World scenarios and does not rely on room surfaces being planar.Comment: 8 pages, 4 figure

    Normal classification of 3D occupancy grids for voxel-based indoor reconstruction from point clouds

    Get PDF
    In this paper, we present an automated method for classification of binary voxel occupancy grids of discretized indoor mapping data such as point clouds or triangle meshes according to normal vector directions. Filled voxels get assigned normal class labels distinguishing between horizontal and vertical building structures. The horizontal building structures are further differentiated into those with normal directions pointing upwards or downwards with respect to the building interior. The derived normal grids can be deployed in the context of an existing voxel-based indoor reconstruction pipeline, which so far was only applicable to indoor mapping triangle meshes that already contain normal vectors consistently oriented with respect to the building interior. By means of quantitative evaluation against reference data, we demonstrate the performance of the proposed method and its applicability in the context of voxel-based indoor reconstruction from indoor mapping point clouds without normal vectors. The code of our implementation is made available to the public at https://github.com/huepat/voxir

    Length-dependent oscillations of the conductance through atomic chains: The importance of electronic correlations

    Full text link
    We calculate the conductance of atomic chains as a function of their length. Using the Density Matrix Renormalization Group algorithm for a many-body model which takes into account electron-electron interactions and the shape of the contacts between the chain and the leads, we show that length-dependent oscillations of the conductance whose period depends on the electron density in the chain can result from electron-electron scattering alone. The amplitude of these oscillations can increase with the length of the chain, in contrast to the result from approaches which neglect the interactions.Comment: 7 pages, 4 figure

    Electron Transport through Disordered Domain Walls: Coherent and Incoherent Regimes

    Full text link
    We study electron transport through a domain wall in a ferromagnetic nanowire subject to spin-dependent scattering. A scattering matrix formalism is developed to address both coherent and incoherent transport properties. The coherent case corresponds to elastic scattering by static defects, which is dominant at low temperatures, while the incoherent case provides a phenomenological description of the inelastic scattering present in real physical systems at room temperature. It is found that disorder scattering increases the amount of spin-mixing of transmitted electrons, reducing the adiabaticity. This leads, in the incoherent case, to a reduction of conductance through the domain wall as compared to a uniformly magnetized region which is similar to the giant magnetoresistance effect. In the coherent case, a reduction of weak localization, together with a suppression of spin-reversing scattering amplitudes, leads to an enhancement of conductance due to the domain wall in the regime of strong disorder. The total effect of a domain wall on the conductance of a nanowire is studied by incorporating the disordered regions on either side of the wall. It is found that spin-dependent scattering in these regions increases the domain wall magnetoconductance as compared to the effect found by considering only the scattering inside the wall. This increase is most dramatic in the narrow wall limit, but remains significant for wide walls.Comment: 23 pages, 12 figure

    Spin-Blockade in Single and Double Quantum Dots in Magnetic Fields: a Correlation Effect

    Full text link
    The total spin of correlated electrons in a quantum dot changes with magnetic field and this effect is generally linked to the change in the total angular momentum from one magic number to another, which can be understood in terms of an `electron molecule' picture for strong fields. Here we propose to exploit this fact to realize a spin blockade, i.e., electrons are prohibited to tunnel at specific values of the magnetic field. The spin-blockade regions have been obtained by calculating both the ground and excited states. In double dots the spin-blockade condition is found to be less stringent than in single dots.Comment: 4pages, to be published in Phys. Rev. B (Rapid Communication

    Spin blockade in ground state resonance of a quantum dot

    Full text link
    We present measurements on spin blockade in a laterally integrated quantum dot. The dot is tuned into the regime of strong Coulomb blockade, confining ~ 50 electrons. At certain electronic states we find an additional mechanism suppressing electron transport. This we identify as spin blockade at zero bias, possibly accompanied by a change in orbital momentum in subsequent dot ground states. We support this by probing the bias, magnetic field and temperature dependence of the transport spectrum. Weak violation of the blockade is modelled by detailed calculations of non-linear transport taking into account forbidden transitions.Comment: 4 pages, 4 figure

    Influence of nano-mechanical properties on single electron tunneling: A vibrating Single-Electron Transistor

    Full text link
    We describe single electron tunneling through molecular structures under the influence of nano-mechanical excitations. We develop a full quantum mechanical model, which includes charging effects and dissipation, and apply it to the vibrating C60_{60} single electron transistor experiment by Park {\em et al.} {[Nature {\bf 407}, 57 (2000)].} We find good agreement and argue vibrations to be essential to molecular electronic systems. We propose a mechanism to realize negative differential conductance using local bosonic excitations.Comment: 7 pages, 6 figure
    corecore