62 research outputs found

    Proteasome Activation by Hepatitis C Core Protein Is Reversed by Ethanol-Induced Oxidative Stress

    Get PDF
    Background & Aims: The proteasome is a major cellular proteinase. Its activity is modulated by cellular oxidants. Hepatitis C core protein and ethanol exposure both cause enhanced oxidant generation. The aim was to investigate whether core protein, by its ability to generate oxidants, alters proteasome activity and whether these alterations are further affected by ethanol exposure. Methods: These interactions were examined in Huh-7 cell lines that expressed inducible HCV core protein and/or constitutive cytochrome P450 2E1 (CYP2E1) and as purified components in a cell-free system. Chymotrypsin-like proteasome activity was measured fluorometrically. Results: Proteasome activity in core-positive 191-20 cells was 20% higher than that in core-negative cells and was enhanced 3-fold in CYP2E1-expressing L14 cells. Exposure of core-positive cells to glutathione ethyl ester, catalase, or the CYP2E1 inhibitor diallyl sulfide partially reversed the elevation of proteasome activity in core-positive cells, whereas ethanol exposure suppressed proteasome activity. The results indicate that proteasome activity was up-regulated by low levels of core-induced oxidative stress but downregulated by high levels of ethanol-elicited stress. These findings were partially mimicked in a cell-free system. Addition of core protein enhanced the peptidase activity of purified 20S proteasome containing the proteasome activator PA28 and was further potentiated by addition of liver mitochondrial and/or microsome fractions. However, proteasome activation was significantly attenuated when fractions were obtained from ethanol-fed animals. Conclusions: HCV core protein interacts with PA28, mitochondrial, and endoplasmic reticulum proteins to cause low levels of oxidant stress and proteasome activation, which is dampened during ethanol metabolism when oxidant generation is higher

    A critical role for hepatic protein arginine methyltransferase 1 isoform 2 in glycemic control

    Full text link
    Appropriate control of hepatic gluconeogenesis is essential for the organismal survival upon prolonged fasting and maintaining systemic homeostasis under metabolic stress. Here, we show protein arginine methyltransferase 1 (PRMT1), a key enzyme that catalyzes the protein arginine methylation process, particularly the isoform encoded by Prmt1 variant 2 (PRMT1V2), is critical in regulating gluconeogenesis in the liver. Liver‐specific deletion of Prmt1 reduced gluconeogenic capacity in cultured hepatocytes and in the liver. Prmt1v2 was expressed at a higher level compared to Prmt1v1 in hepatic tissue and cells. Gain‐of‐function of PRMT1V2 clearly activated the gluconeogenic program in hepatocytes via interactions with PGC1α, a key transcriptional coactivator regulating gluconeogenesis, enhancing its activity via arginine methylation, while no effects of PRMT1V1 were observed. Similar stimulatory effects of PRMT1V2 in controlling gluconeogenesis were observed in human HepG2 cells. PRMT1, specifically PRMT1V2, was stabilized in fasted liver and hepatocytes treated with glucagon, in a PGC1α‐dependent manner. PRMT1, particularly Prmt1v2, was significantly induced in the liver of streptozocin‐induced type 1 diabetes and high fat diet‐induced type 2 diabetes mouse models and liver‐specific Prmt1 deficiency drastically ameliorated diabetic hyperglycemia. These findings reveal that PRMT1 modulates gluconeogenesis and mediates glucose homeostasis under physiological and pathological conditions, suggesting that deeper understanding how PRMT1 contributes to the coordinated efforts in glycemic control may ultimately present novel therapeutic strategies that counteracts hyperglycemia in disease settings.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163465/10/fsb221018-sup-0005-FigS5.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163465/9/fsb221018-sup-0001-FigS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163465/8/fsb221018-sup-0003-FigS3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163465/7/fsb221018-sup-0008-FigS8.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163465/6/fsb221018-sup-0002-FigS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163465/5/fsb221018_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163465/4/fsb221018.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163465/3/fsb221018-sup-0007-FigS7.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163465/2/fsb221018-sup-0006-FigS6.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163465/1/fsb221018-sup-0004-FigS4.pd

    MTBP inhibits the Erk1/2-Elk-1 signaling in hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the prognosis of HCC patients, especially those with metastasis, remains extremely poor. This is partly due to unclear molecular mechanisms underlying HCC metastasis. Our previous study indicates that MDM2 Binding Protein (MTBP) suppresses migration and metastasis of HCC cells. However, signaling pathways regulated by MTBP remain unknown. To identify metastasis-associated signaling pathways governed by MTBP, we have performed unbiased luciferase reporter-based signal array analyses and found that MTBP suppresses the activity of the ETS-domain transcription factor Elk-1, a downstream target of Erk1/2 MAP kinases. MTBP also inhibits phosphorylation of Elk-1 and decreases mRNA expression of Elk-1 target genes. Reduced Elk-1 activity is caused by inhibited nuclear translocation of phosphorylated Erk1/2 (p-Erk) by MTBP and subsequent inhibition of Elk-1 phosphorylation. We also reveal that MTBP inhibits the interaction of p-Erk with importin-7/RanBP7 (IPO7), an importin family member which shuttles p-Erk into the nucleus, by binding to IPO7. Moreover, high levels of MTBP in human HCC tissues are correlated with cytoplasmic localization of p-Erk1/2. Our study suggests that MTBP suppresses metastasis, at least partially, by down-modulating the Erk1/2-Elk-1 signaling pathway, thus identifying a novel regulatory mechanism of HCC metastasis by regulating the subcellular localization of p-Erk

    Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein

    Get PDF
    Background and Aims: The mechanisms of liver injury in chronic hepatitis C virus (HCV) infection are poorly understood. Indirect evidence suggests that oxidative stress and mitochondrial injury play a role. The aim of this study was to determine if the HCV core protein itself alters mitochondrial function and contributes to oxidative stress. Methods: HCV core protein was expressed in 3 different cell lines, and reactive oxygen species (ROS) and lipid peroxidation products were measured. Results: Core expression uniformly increased ROS. In 2 inducible expression systems, core protein also increased lipid peroxidation products and induced antioxidant gene expression as well. A mitochondrial electron transport inhibitor prevented the core-induced increase in ROS. A fraction of the expressed core protein localized to the mitochondria and was associated with redistribution of cytochrome c from mitochondrial to cytosolic fractions. Sensitivity to oxidative stress was also seen in HCV transgenic mice in which increased intrahepatic lipid peroxidation products occurred in response to carbon tetrachloride. Conclusions: Oxidative injury occurs as a direct result of HCV core protein expression both in vitro and in vivo and may involve a direct effect of core protein on mitochondria. These results provide new insight into the pathogenesis of hepatitis C and provide an experimental rationale for investigation of antioxidant therapy

    Increased incidence of aflatoxin B1-induced liver tumors in hepatitis virus C transgenic mice

    Get PDF
    Viral hepatitis and aflatoxin B1 (AFB1) exposure are common risk factors for hepatocellular carcinoma (HCC). The incidence of HCC in individuals co-exposed to hepatitis C (HCV) or B virus and AFB1 is greater than could be explained by the additive effect, yet the mechanisms are poorly understood due to lack of an animal model. This study investigated the outcomes and mechanisms of combined exposure to HCV and AFB1. We hypothesized that HCV transgenic (HCV-Tg; expressing core, E1, E2, and p7, nucleotides 342–2771) mice will be prone to hepatocarcinogenesis when exposed to AFB1. Neonatal (7 days old) HCV-Tg or C57BL/6J wild-type mice were exposed to AFB1 (6 μg/g bw) or tricaprylin vehicle (15 μl/g bw) and male offspring were followed for up to 12 months. No liver lesions were observed in vehicle-treated wild type or HCV-Tg mice. Tumors (adenomas or carcinomas) and preneoplastic lesions (hyperplasia or foci) were observed in 22.5% (9 of 40) of AFB1-treated wild-type mice. In HCV-Tg, the incidence of tumorous or pre-tumorous lesions was significantly elevated (50%, 18 of 36), with the difference largely due to a 2.5-fold increase in the incidence of adenomas (30.5% vs 12.5%). While oxidative stress and steato-hepatisis were observed in both AFB1-treated groups, molecular changes indicative of the enhanced inflammatory response and altered lipid metabolism were more pronounced in HCV-Tg mice. In summary, HCV proteins core, E1, E2 and p7 are sufficient to reproduce the co-carcinogenic effect of HCV and AFB1 which is a known clinical phenomenon

    Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus

    Get PDF
    Background and Aims: The aim of this study was to determine whether expression of hepatitis C virus proteins alters hepatic morphology or function in the absence of inflammation. Methods: Transgenic C57BL/6 mice with liver-specific expression of RNA encoding the complete viral polyprotein (FL-N transgene) or viral structural proteins (S-N transgene) were compared with nontransgenic littermates for altered liver morphology and function. Results: FL-N transcripts were detectable only by reverse-transcription polymerase chain reaction, and S-N transcripts were identified in Northern blots. The abundance of viral proteins was sufficient for detection only in S-N transgenic animals. There was no inflammation in transgenic livers, but mice expressing either transgene developed age-related hepatic steatosis that was more severe in males. Apoptotic or proliferating hepatocytes were not significantly increased. Hepatocellular adenoma or carcinoma developed in older male animals expressing either transgene, but their incidence reached statistical significance only in FL-N animals. Neither was ever observed in age-matched nontransgenic mice. Conclusions: Constitutive expression of viral proteins leads to common pathologic features of hepatitis C in the absence of specific anti-viral immune responses. Expression of the structural proteins enhances a low background of steatosis in C57BL/6 mice, while additional low level expression of nonstructural proteins increases the risk of cancer

    Intracellular Proton Conductance of the Hepatitis C Virus p7 Protein and Its Contribution to Infectious Virus Production

    Get PDF
    The hepatitis C virus (HCV) p7 protein is critical for virus production and an attractive antiviral target. p7 is an ion channel when reconstituted in artificial lipid bilayers, but channel function has not been demonstrated in vivo and it is unknown whether p7 channel activity plays a critical role in virus production. To evaluate the contribution of p7 to organelle pH regulation and virus production, we incorporated a fluorescent pH sensor within native, intracellular vesicles in the presence or absence of p7 expression. p7 increased proton (H+) conductance in vesicles and was able to rapidly equilibrate H+ gradients. This conductance was blocked by the viroporin inhibitors amantadine, rimantadine and hexamethylene amiloride. Fluorescence microscopy using pH indicators in live cells showed that both HCV infection and expression of p7 from replicon RNAs reduced the number of highly acidic (pH<5) vesicles and increased lysosomal pH from 4.5 to 6.0. These effects were not present in uninfected cells, sub-genomic replicon cells not expressing p7, or cells electroporated with viral RNA containing a channel-inactive p7 point mutation. The acidification inhibitor, bafilomycin A1, partially restored virus production to cells electroporated with viral RNA containing the channel inactive mutation, yet did not in cells containing p7-deleted RNA. Expression of influenza M2 protein also complemented the p7 mutant, confirming a requirement for H+ channel activity in virus production. Accordingly, exposure to acid pH rendered intracellular HCV particles non-infectious, whereas the infectivity of extracellular virions was acid stable and unaffected by incubation at low pH, further demonstrating a key requirement for p7-induced loss of acidification. We conclude that p7 functions as a H+ permeation pathway, acting to prevent acidification in otherwise acidic intracellular compartments. This loss of acidification is required for productive HCV infection, possibly through protecting nascent virus particles during an as yet uncharacterized maturation process

    Persistent Expression of Hepatitis C Virus Non-Structural Proteins Leads to Increased Autophagy and Mitochondrial Injury in Human Hepatoma Cells

    Get PDF
    HCV infection is a major cause of chronic liver disease and liver cancer in the United States. To address the pathogenesis caused by HCV infection, recent studies have focused on the direct cytopathic effects of individual HCV proteins, with the objective of identifying their specific roles in the overall pathogenesis. However, this approach precludes examination of the possible interactions between different HCV proteins and organelles. To obtain a better understanding of the various cytopathic effects of and cellular responses to HCV proteins, we used human hepatoma cells constitutively replicating HCV RNA encoding either the full-length polyprotein or the non-structural proteins, or cells constitutively expressing the structural protein core, to model the state of persistent HCV infection and examined the combination of various HCV proteins in cellular pathogenesis. Increased reactive oxygen species (ROS) generation in the mitochondria, mitochondrial injury and degeneration, and increased lipid accumulation were common among all HCV protein-expressing cells regardless of whether they expressed the structural or non-structural proteins. Expression of the non-structural proteins also led to increased oxidative stress in the cytosol, membrane blebbing in the endoplasmic reticulum, and accumulation of autophagocytic vacuoles. Alterations of cellular redox state, on the other hand, significantly changed the level of autophagy, suggesting a direct link between oxidative stress and HCV-mediated activation of autophagy. With the wide-spread cytopathic effects, cells with the full-length HCV polyprotein showed a modest antioxidant response and exhibited a significant increase in population doubling time and a concomitant decrease in cyclin D1. In contrast, cells expressing the non-structural proteins were able to launch a vigorous antioxidant response with up-regulation of antioxidant enzymes. The population doubling time and cyclin D1 level were also comparable to that of control cells. Finally, the cytopathic effects of core protein appeared to focus on the mitochondria without remarkable disturbances in the cytosol
    corecore