16 research outputs found

    Acoustic metamaterial models on the (2+1)D Schwarzschild plane

    Full text link
    [EN] Recent developments in acoustic metamaterial engineering have led to the design and fabrication of devices with formidable properties, such as acoustic cloaking, superlenses and ultra-sound waves. Artificial materials of this type are generally absent in natural environments. In this work, we focus on feasible implementations of acoustic black holes on the 2D plane, that is, within (2+1)D spacetime. For an accurate description of planar black holes in transformation acoustics, we examine Schwarzschild-type models. After proposing an appropriate form for the Lorentzian metric of the underlying spacetime, we explore the geometric content and physical consequences of such models, which will turn out to have de Sitter and anti-de Sitter spacetime structure. For this purpose, we derive a general expression for its acoustic wave propagation. Next, a numerical simulation is carried out for prototype waves which probe these spacetime geometries. Finally, we discuss how to fine-tune the corresponding acoustic parameters for an implementation in the laboratory environment.M. M. T. acknowledges financial support by the Spanish Ministerio de Economia y Competitividad, the European Regional Development Fund under grant TIN2014-59294-P, and the Generalitat Valenciana (BEST2017). He also wishes to thank for the cordial reception and hospitality at the Institute for Analysis and Scientific Computing of the Vienna University of Technology where part of the present work was established.Tung, MM.; Weinmüller, EB. (2019). Acoustic metamaterial models on the (2+1)D Schwarzschild plane. Journal of Computational and Applied Mathematics. 346:162-170. https://doi.org/10.1016/j.cam.2018.07.009S16217034

    Gravitational frequency shifts in transformation acoustics

    Full text link
    In metamaterial acoustics, it is conceivable that any type of fine-tuned acoustic properties far beyond those found in nature may be transferred to an appropriate medium. Effective design and engineering of these modern acoustic metadevices poses one of the forefront challenges in this field. As a practical example of a new covariant approach for modelling acoustics on spacetime manifolds, we choose to implement the acoustic analogue of the frequency shift due to gravitational time dilation. In accordance with Einstein's equivalence principle, two different spacetimes, corresponding to uniform acceleration or uniform gravity, are considered. For wave propagation in a uniformly accelerating rigid frame, an acoustic event horizon arises. The discussion includes a detailed numerical analysis for both spacetime geometries. Copyright (c) EPLA, 2013MMT wishes to thank MARKUS SCHOBINGER for an introduction to the SBVP MATLAB solver and acknowledges partial support by the Universidad Politecnica de Valencia (PAID-00-12) and the International Office of the Vienna University of Technology.Tung, MM.; Weinmüller, EB. (2013). Gravitational frequency shifts in transformation acoustics. EPL. 101(5):54006-54011. https://doi.org/10.1209/0295-5075/101/54006S5400654011101

    Bioconjugation of supramolecular metallacages to integrin ligands for targeted delivery of cisplatin

    Get PDF
    Cisplatin occupies a crucial role in the treatment of various malignant tumours. However, its efficacy and applicability are heavily restricted by severe systemic toxicities and drug resistance. Our study exploits the active targeting of supramolecular metallacages to enhance the activity of cisplatin in cancer cells while reducing its toxicity. Thus, Pd2L4 cages (L = ligand) have been conjugated to four integrin ligands with different binding affinity and selectivity. Cage formation and encapsulation of cisplatin was proven by NMR spectroscopy. Upon encapsulation, cisplatin showed increased cytotoxicity in vitro, in melanoma A375 cells overexpressing αvβ3 integrins. Moreover, ex vivo studies in tissue slices indicated reduced toxicity towards healthy liver and kidney tissues for cage-encapsulated cisplatin. Analysis of metal content by ICP-MS demonstrated that encapsulated drug is less accumulated in these organs compared to the ‘free’ one

    Neumann problems with time singularities

    Get PDF
    AbstractIn this paper we study the existence and uniqueness of solutions to a nonlinear Neumann problem for a scalar second order ordinary differential equation u″=atu′+f(t,u,u′), where a<0, and f(t,x,y) satisfies the local Carathéodory conditions on [0,T]×R×R

    Exploring the Role of RGD-Recognizing Integrins in Cancer

    No full text
    Integrins are key regulators of communication between cells and with their microenvironment. Eight members of the integrin superfamily recognize the tripeptide motif Arg-Gly-Asp (RGD) within extracelluar matrix (ECM) proteins. These integrins constitute an important subfamily and play a major role in cancer progression and metastasis via their tumor biological functions. Such transmembrane adhesion and signaling receptors are thus recognized as promising and well accessible targets for novel diagnostic and therapeutic applications for directly attacking cancer cells and their fatal microenvironment. Recently, specific small peptidic and peptidomimetic ligands as well as antibodies binding to distinct integrin subtypes have been developed and synthesized as new drug candidates for cancer treatment. Understanding the distinct functions and interplay of integrin subtypes is a prerequisite for selective intervention in integrin-mediated diseases. Integrin subtype-specific ligands labelled with radioisotopes or fluorescent molecules allows the characterization of the integrin patterns in vivo and later the medical intervention via subtype specific drugs. The coating of nanoparticles, larger proteins, or encapsulating agents by integrin ligands are being explored to guide cytotoxic reagents directly to the cancer cell surface. These ligands are currently under investigation in clinical studies for their efficacy in interference with tumor cell adhesion, migration/invasion, proliferation, signaling, and survival, opening new treatment approaches in personalized medicine
    corecore