4,435 research outputs found

    Application of Calspan pitch rate control system to the Space Shuttle for approach and landing

    Get PDF
    A pitch rate control system designed for use in the shuttle during approach and landing was analyzed and compared with a revised control system developed by NASA and the existing OFT control system. The design concept control system uses filtered pitch rate feedback with proportional plus integral paths in the forward loop. Control system parameters were designed as a function of flight configuration. Analysis included time and frequency domain techniques. Results indicate that both the Calspan and NASA systems significantly improve the flying qualities of the shuttle over the OFT. Better attitude and flight path control and less time delay are the primary reasons. The Calspan system is preferred because of reduced time delay and simpler mechanization. Further testing of the improved flight control systems in an in-flight simulator is recommended

    Numerical Evidence for the Observation of a Scalar Glueball

    Get PDF
    We compute from lattice QCD in the valence (quenched) approximation the partial decay widths of the lightest scalar glueball to pairs of pseudoscalar quark-antiquark states. These predictions and values obtained earlier for the scalar glueball's mass are in good agreement with the observed properties of fJ(1710)f_J(1710) and inconsistent with all other observed meson resonances.Comment: 12 pages of Latex, 3 PostsScript figures as separate uufil

    Scalar Quarkonium Masses and Mixing with the Lightest Scalar Glueball

    Get PDF
    We evaluate the continuum limit of the valence (quenched) approximation to the mass of the lightest scalar quarkonium state, for a range of different quark masses, and to the mixing energy between these states and the lightest scalar glueball. Our results support the interpretation of f0(1710)f_0(1710) as composed mainly of the lightest scalar glueball.Comment: 14 pages of Latex, 5 PostScript figure

    The Numerical Estimation of the Error Induced by the Valence Approximation

    Get PDF
    We describe a systematic expansion for full QCD. The leading term in the expansion gives the valence approximation. The expansion reproduces full QCD if an infinite number of higher terms are included.Comment: 3 pages, latex, no figures, requires espcrc2.sty (included at end) Contribution to Lattice 94 proceeding

    An in-flight investigation of a twin fuselage configuration in approach and landing

    Get PDF
    An in-flight investigation of the flying qualities of a twin fuselage aircraft design in the approach and landing flight phase was carried out in the USAF/AFWAL Total In-Flight Simulator (TIFS). The objective was to determine the effects of actual motion and visual cues on the pilot when he was offset from the centerline of the aircraft. The experiment variables were lateral pilot offset position (0, 30 and 50 feet) and effective roll mode time constant (.6, 1.2, 2.4 seconds). The evaluation included the final approach, flare and touchdown. Lateral runway offsets and 15 knot crosswinds were used to increase the pilot's workload and force him to make large lateral corrections in the final portion of the approach. Results indicated that large normal accelerations rather than just vertical displacements in rolling maneuvers had the most significant degrading effect on pilot ratings. The normal accelerations are a result of large lateral offset and fast roll mode time constant and caused the pilot to make unnecessary pitch inputs and get into a coupled pitch/roll oscillation while he was making line up and crosswind corrections. A potential criteria for lateral pilot offset position effects is proposed. When the ratio of incremented normal aceleration at the pilot station to the steady state roll rate for a step input reaches .01 to .02 g/deg/sec a deterioration of pilot rating and flying qualities level can be expected

    The Role of Statistical Data in the Functioning of the Courts

    Get PDF

    Flared landing approach flying qualities. Volume 2: Appendices

    Get PDF
    An in-flight research study was conducted utilizing the USAF/Total In-Flight Simulator (TIFS) to investigate longitudinal flying qualities for the flared landing approach phase of flight. A consistent set of data were generated for: determining what kind of command response the pilot prefers/requires in order to flare and land an aircraft with precision, and refining a time history criterion that took into account all the necessary variables and the characteristics that would accurately predict flying qualities. Seven evaluation pilots participated representing NASA Langley, NASA Dryden, Calspan, Boeing, Lockheed, and DFVLR (Braunschweig, Germany). The results of the first part of the study provide guidelines to the flight control system designer, using MIL-F-8785-(C) as a guide, that yield the dynamic behavior pilots prefer in flared landings. The results of the second part provide the flying qualities engineer with a derived flying qualities predictive tool which appears to be highly accurate. This time-domain predictive flying qualities criterion was applied to the flight data as well as six previous flying qualities studies, and the results indicate that the criterion predicted the flying qualities level 81% of the time and the Cooper-Harper pilot rating, within + or - 1%, 60% of the time

    RF Characterization of Superconducting Samples

    Get PDF
    At CERN a compact Quadrupole Resonator has been re-commissioned for the RF characterization of superconducting materials at 400 MHz. In addition the resonator can also be excited at multiple integers of this frequency. Besides Rs it enables determination of the maximum RF magnetic field, the thermal conductivity and the penetration depth of the attached samples, at different temperatures. The features of the resonator will be compared with those of similar RF devices and first results will be presented

    Flared landing approach flying qualities. Volume 1: Experiment design and analysis

    Get PDF
    An inflight research study was conducted utilizing the USAF Total Inflight Simulator (TIFS) to investigate longitudinal flying qualities for the flared landing approach phase of flight. The purpose of the experiment was to generate a consistent set of data for: (1) determining what kind of commanded response the pilot prefers in order to flare and land an airplane with precision, and (2) refining a time history criterion that took into account all the necessary variables and their characteristics that would accurately predict flying qualities. The result of the first part provides guidelines to the flight control system designer, using MIL-F-8785-(C) as a guide, that yield the dynamic behavior pilots perfer in flared landings. The results of the second part provides the flying qualities engineer with a newly derived flying qualities predictive tool which appears to be highly accurate. This time domain predictive flying qualities criterion was applied to the flight data as well as six previous flying qualities studies, and the results indicate that the criterion predicted the flying qualities level 81% of the time and the Cooper-Harper pilot rating, within + or - 1, 60% of the time
    corecore