10,400 research outputs found

    Neutrino Oscillations as a Probe of Dark Energy

    Full text link
    We consider a class of theories in which neutrino masses depend significantly on environment, as a result of interactions with the dark sector. Such theories of mass varying neutrinos (MaVaNs) were recently introduced to explain the origin of the cosmological dark energy density and why its magnitude is apparently coincidental with that of neutrino mass splittings. In this Letter we argue that in such theories neutrinos can exhibit different masses in matter and in vacuum, dramatically affecting neutrino oscillations. Both long and short baseline experiments are essential to test for these interactions. As an example of modifications to the standard picture, we consider simple models which may simultaneously account for the LSND anomaly, KamLAND, K2K and studies of solar and atmospheric neutrinos, while providing motivation to continue to search for neutrino oscillations in short baseline experiments such as BooNE.Comment: 5 pages, 1 figure, refs added, additional data considered, minor change in conclusions about LSN

    Collisions of cold magnesium atoms in a weak laser field

    Full text link
    We use quantum scattering methods to calculate the light-induced collisional loss of laser-cooled and trapped magnesium atoms for detunings up to 30 atomic linewidths to the red of the 1S_0-1P_1 cooling transition. Magnesium has no hyperfine structure to complicate the theoretical studies. We evaluate both the radiative and nonradiative mechanisms of trap loss. The radiative escape mechanism via allowed 1Sigma_u excitation is dominant for more than about one atomic linewidth detuning. Molecular vibrational structure due to photoassociative transitions to bound states begins to appear beyond about ten linewidths detuning.Comment: 4 pages with 3 embedded figure

    EHR-Based Care Coordination Performance Measures in Ambulatory Care

    Get PDF
    Describes electronic health record-based measures for assessing coordination in referrals, including information communicated with referral, communication to patient, and specialist report to primary care physician. Offers preliminary evaluation findings

    A microfluidic processor for gene expression profiling of single human embryonic stem cells

    Get PDF
    The gene expression of human embryonic stem cells (hESC) is a critical aspect for understanding the normal and pathological development of human cells and tissues. Current bulk gene expression assays rely on RNA extracted from cell and tissue samples with various degree of cellular heterogeneity. These cell population averaging data are difficult to interpret, especially for the purpose of understanding the regulatory relationship of genes in the earliest phases of development and differentiation of individual cells. Here, we report a microfluidic approach that can extract total mRNA from individual single-cells and synthesize cDNA on the same device with high mRNA-to-cDNA efficiency. This feature makes large-scale single-cell gene expression profiling possible. Using this microfluidic device, we measured the absolute numbers of mRNA molecules of three genes (B2M, Nodal and Fzd4) in a single hESC. Our results indicate that gene expression data measured from cDNA of a cell population is not a good representation of the expression levels in individual single cells. Within the G0/G1 phase pluripotent hESC population, some individual cells did not express all of the 3 interrogated genes in detectable levels. Consequently, the relative expression levels, which are broadly used in gene expression studies, are very different between measurements from population cDNA and single-cell cDNA. The results underscore the importance of discrete single-cell analysis, and the advantages of a microfluidic approach in stem cell gene expression studies

    Theoretical characterization of a model of aragonite crystal orientation in red abalone nacre

    Full text link
    Nacre, commonly known as mother-of-pearl, is a remarkable biomineral that in red abalone consists of layers of 400-nm thick aragonite crystalline tablets confined by organic matrix sheets, with the (001)(001) crystal axes of the aragonite tablets oriented to within ±\pm 12 degrees from the normal to the layer planes. Recent experiments demonstrate that this orientational order develops over a distance of tens of layers from the prismatic boundary at which nacre formation begins. Our previous simulations of a model in which the order develops because of differential tablet growth rates (oriented tablets growing faster than misoriented ones) yield patterns of tablets that agree qualitatively and quantitatively with the experimental measurements. This paper presents an analytical treatment of this model, focusing on how the dynamical development and eventual degree of order depend on model parameters. Dynamical equations for the probability distributions governing tablet orientations are introduced whose form can be determined from symmetry considerations and for which substantial analytic progress can be made. Numerical simulations are performed to relate the parameters used in the analytic theory to those in the microscopic growth model. The analytic theory demonstrates that the dynamical mechanism is able to achieve a much higher degree of order than naive estimates would indicate.Comment: 20 pages, 3 figure

    Physical Acoustics

    Get PDF
    Contains reports on two research projects.U. S. Navy (Office of Naval Research) under Contract Nonr-1841(42)National Aeronautics and Space Administratio

    Enhancement and evaluation of Skylab photography for potential land use inventories, part 1

    Get PDF
    The author has identified the following significant results. Three sites were evaluated for land use inventory: Finger Lakes - Tompkins County, Lower Hudson Valley - Newburgh, and Suffolk County - Long Island. Special photo enhancement processes were developed to standardize the density range and contrast among S190A negatives. Enhanced black and white enlargements were converted to color by contact printing onto diazo film. A color prediction model related the density values on each spectral band for each category of land use to the spectral properties of the various diazo dyes. The S190A multispectral system proved to be almost as effective as the S190B high resolution camera for inventorying land use. Aggregate error for Level 1 averaged about 12% while Level 2 aggregate error averaged about 25%. The S190A system proved to be much superior to LANDSAT in inventorying land use, primarily because of increased resolution

    The AGN Luminosity Fraction in Merging Galaxies

    Get PDF
    Galaxy mergers are key events in galaxy evolution, often causing massive starbursts and fueling active galactic nuclei (AGN). In these highly dynamic systems, it is not yet precisely known how much starbursts and AGN respectively contribute to the total luminosity, at what interaction stages they occur, and how long they persist. Here we estimate the fraction of the bolometric infrared (IR) luminosity that can be attributed to AGN by measuring and modeling the full ultraviolet to far-infrared spectral energy distributions (SEDs) in up to 33 broad bands for 24 merging galaxies with the Code for Investigating Galaxy Emission. In addition to a sample of 12 confirmed AGN in late-stage mergers, found in the InfraredInfrared ArrayArray SatelliteSatellite Revised Bright Galaxy Sample or Faint Source Catalog, our sample includes a comparison sample of 12 galaxy mergers from the SpitzerSpitzer Interacting Galaxies Survey, mostly early-stage. We perform identical SED modeling of simulated mergers to validate our methods, and we supplement the SED data with mid-IR spectra of diagnostic lines obtained with SpitzerSpitzer InfraRed Spectrograph. The estimated AGN contributions to the IR luminosities vary from system to system from 0% up to 91% but are significantly greater in the later-stage, more luminous mergers, consistent with what is known about galaxy evolution and AGN triggering.Comment: 26 pages, 10 figure
    • …
    corecore