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A. SOUND WAVE GENERATION AND AMPLIFICATION IN PLASMAS

In a gas discharge, the electron temperature is generally much greater than the

neutral-gas temperature; consequently, energy is transferred to the neutral particles

through electron-neutral collisions. This energy transfer implies that any sound waves

in the neutral fluid will be nonadiabatic and the pressure must be considered as a func-

tion of both density and entropy. Since energy is being delivered to the neutrals, we

may expect to observe this energy either in the steady increase of the neutral tempera-

ture, or in the generation of growing waves in the neutral fluid. It is this generation of

sound waves which is of interest here.

If the linearized continuity and momentum equations for a nondissipative gas

ap + pV t-T = 0 (1)
8t

p -- + Vp = 0 (2)

are combined by subtracting the time derivative of Eq. 1 from the divergence of Eq. 2,

we obtain

2
a 2p, (3)

at2

where p is the mass density, and p the pressure of the neutral fluid. The density is

related to the pressure and entropy, S, through the equation of state. If we assume a

perfect gas, then

dp = (1/c 2 ) dp - (p/C p) dS, (4)

where c is the sound velocity, and C is the specific heat at constant pressure. Com-

bining Eqs. 3 and 4 gives

2
1  2 ap a(' a a

2 2 t t at C tc at L i
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Using the fact that pTn dS/dt = H, the rate of heat transfer to the neutral fluid, we
obtain

2

where y is the ratio of specific heats. If we neglect the variations in sound velocity,

Eq. 6 becomes

1 p 2 y aH2 2 V p 2 at (7)
a 2 

It is now necessary to derive an expression for H in the case of energy transfer

from electrons to neutrals through elastic collisions. This expression is found by inte-

grating the product of the energy transferred per collision and the probability of colli-

sion over all possible collisions. Thus2

Tr m (v 2m

H =sin 0 dO 2 m (-cos0) e(ve 0) f(e) Nn (8)

where 0 is the angle of scattering, a- is the differential cross section, f(-e ) is the

electron distribution function, and Nn is the neutral density. The integrals in Eq. 8
depend on the energy and angular dependence of the cross section, but for our purposes,

we shall assume an effective electron-neutral collision frequency, and set

H = kT e(2me/mn ) Ne v e. (9)

varies with the electron temperature, T . From Eqs. 7 and 9, it can be seen that there
e

will be a source term in the acoustic wave equation if the electron density, the electron

temperature, or the collision frequency varies with time.

In the afterglow of a gas discharge, the electron temperature decays exponentially

and provides a source term in Eq. 7. Experimental studies1 performed in cryogenic
afterglow plasmas have shown that the transverse acoustic modes of the discharge tube
are excited, and the relative amplitude of oscillation increases with decreasing neutral

temperature. These observations are in agreement with results derived from Eqs. 7

and 9 for an exponentially decreasing electron temperature.

If we consider variations in the collision frequency caused by variations in the neu-

tral density (or pressure), then

av v e ap v ap

at Po at - 2 at (10)
nn
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Inserting this into Eqs. 7 and 9 gives the homogeneous equation

2
a p 2 2 8ap

2 V p 2 at' (11)
c at c

where

y-1T m N
Pe _e (12)2 T m N e'n n n

By substituting a plane wave, p = P exp(ikx-iwt), in Eq. 11, we obtain the dispersion

relation

v = ip c 2k 2  (13)

which represents growing waves. Similarly, if we consider w to be real, then the

waves will grow in space. Equation 11 has also been studied for waves in cylindrical

and spherical discharge tubes, and in both cases, yields self-excited sound waves. In

these problems, the fact that the electron density is not uniform leads to coupling

between the various acoustic modes, but this does not alter the fact that the waves are

self-excited.

In an experimental study of ionic sound waves, Alexeff and Neidigh 2 also observed

ordinary sound waves in a spherical discharge tube. They found that these ordinary sound

waves did not occur at low pressures, but as the pressure increased (above -1 mm),

sound waves were spontaneously generated. From Eq. 12, we see that the growth

rate, P, is proportional to pressure for constant degree of ionization. Dissipative

effects in the bulk of the gas and at the boundaries, resulting from heat conduction and

viscosity, decrease with increasing pressure. Thus as the pressure increases, the

growth mechanism will dominate the dissipative mechanisms as observed experimen-

tally.

In the experiments mentioned above, these sound waves have been detected through

their effect on the electron fluid. The waves in the neutral fluid tend to produce waves

in the ion fluid through ion-neutral collisions. These ion waves then tend to produce

electron waves through the electric fields that they establish. It is these electron waves

that may be detected by microwave interactions or with probes.

As seen in Eq. 9, any electron waves that are in phase with the sound waves, will

increase the source term in Eq. 7. If we assume that the electron waves have the same

relative amplitude as the neutral waves

ne/Ne = nn/Nn,

then the growth rate, P, has twice the value given in Eq. 12.
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The important factors in maximizing the growth rate for these acoustic waves
are: decreasing the neutral temperature (as has been done by Berlande, Goldan, and
Goldstein), and increasing the pressure and degree of ionization (as has been done by
Alexeff and Neidigh). If the features of both these experiments were combined, it should
be possible to detect the amplification of a propagating sound wave fairly easily.

S. D. Weiner, K. U. Ingard

References

1. J. Berlande, P. D. Goldan, and L. Goldstein, Appl. Phys. Letters 5, 51-2 (1964).
2. I. Alexeff and R. V. Neidigh, Phys. Rev. 129, 516-27 (1963).

B. HYPERSONIC RELAXATION EFFECTS AND BRILLOUIN SCATTERING

In a previous report,l some preliminary results of hypersonic velocity and absorp-
tion measurements in acetic acid were presented. These measurements were made by
observing the frequency shifts and broadening in light from an He3-Ne laser scattered
by the liquid's thermal phonons. The sound propagation characteristics are inferred
from the scattered light through the equations

v
v = + 2v 1 c sin 0/2s o c

a v
S S

6v
s 2r '

where v and vs are frequencies of incident light and hypersound; 0 is the scattering
angle; as is the sound absorption coefficient; ri is the liquid's refractive index, and c
is the velocity of light in vacuo; and 6vs is the broadening in frequency of the scattered
light.

In the previous report1 the possibility of resonant acoustic damping in acetic acid,
suggested by small oscillations observed in the velocity with frequency and by some
roughly corresponding peaks in the total scattered linewidth, was expressed. Since
these initial measurements were taken, sufficient improvement has been made in the
accuracy of the experiment to rule out any acoustic resonance in acetic acid between
1 kMc and 6 kMc of sufficient strength to cause a velocity change Avs/Vs > 0. 1%. The
previously observed peaks in linewidth were attributable to fluctuations in the maser
power.

As Fig. VIII-1 shows, we have now observed a new relaxation in acetic acid. Other
liquids that were studied either showed no dispersion from the ultrasonic (~1 Mc) to the
hypersonic (~6 kMc) ranges or exhibited relaxations. Table VIII-1 summarizes the data
for these liquids. Those liquids exhibiting an increase in sound velocity from the
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ultrasonic to hypersonic range, evidence acoustic relaxation processes that are active

in the kilomegacycle frequency range. Thus far, no resonances have been observed in

the damping of hypersonic waves.
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E
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._ ULTRASONIC
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/s N kMc

Fig. VIII-1. Hypersonic velocity in acetic acid values normalized to
AV

T = 21. 6°C by using AT -4. 8 m/sec/C.

Previous work in the hypersonic range has suggested a possible resonance in H20,2
attributable to reported decreases in the sound velocity with increasing frequency.

These results, however, were reported only for single hypersonic frequencies. There-

fore, we measured sound velocity in H 2 0 at a variety of frequencies (1-7 kMc) and tem-

peratures (10 0 -50'C). We found no departure from the 5-Me values reported by

Greenspan.3

The high accuracy (<0. 1%o) of our velocity measurements for maximum scattering

angle (0=1800) was achieved largely through a greatly improved signal-to-noise ratio

resulting from the arrangement shown in Fig. VIII-2. This arrangement increases the

intensity of the light scattered into the receiving system by a factor of approximately

100, as compared with that viewed in the variable angle arrangement. 4 Also, a new

He 3 -Ne laser, capable of a continuous output of 65 mW at 6328 A, was constructed and

used for these experiments. A much improved Fabry-Perot interferometer, capable

of resolving 150 Mc, was also used.

Because of the different line shapes of the maser, the Fabry-Perot interferometer,

and the phonon broadening, the extraction of 6vs from the total observed scattered line-

width is cumbersome. A direct subtraction of the instrumental linewidth (maser plus

Fabry-Perot) from the total linewidth is presented in Table VIII-1. Such subtraction is

only valid when all line shapes involved are Lorentzian. In the present situation this

procedure gives phonon broadenings 10-30% too small. A numerical procedure to correct

QPR No. 78



Liquid

Acetic Acid

Benzene

Toluene

Nitrobenzeneb

CC14

CS
2

H2oc

Acetone

Ethyl Ether

Table VIII- 1.

v (~1 Mc)a

1144 (m/sec)

1324

1324

1462

920

1158

1488. 6

1190

1000

Comparison of ultrasonic and hypersonic velocity data in
liquids with and without relaxation effects.

v (0= 180 0)

1180 (m/sec)

1501

1376

1558

1046

1250

1488. 0

1190

999

T oC vs (0=180 )

22. 00 5. 11 (kMc)

21. 90 7. 10

21.80 6.49

22. 50 7. 62

22. 50 4. 82

21. 50 6.40

22. 00 6. 26

21.60 5. 08

21.40 4.28

(6vs)su
b

370 (Mc)

245

480

670

430

55

200

175

180

aK. F. Herzfeld and T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic Press,
New York, 1959), pp. 506, 419, 357. The temperatures of the ultrasonic measurements were not
specified beyond identifying them as "room temperature." (6vs)ext is the linewidth predicted by ultra-

2sonic absorption data, when scaled up as v to kMc frequencies.
I, s
UJ. R. Pellam and K. K. Galt, J. Chem. Phys. 14, 608, 1946.
CSee M. Greenspan and T. Tschiegg, J. Res. Natl. Bur. Std. 59, 249 (1957).

(6vs)ex
t

550 (Mc)

8, 400

735

1,200

1,285

43, 900

220

155
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Fig. VIII-2.
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Experimental arrangement for observation of Brillouin
scattering at 1800. The maser is linearly polarized
perpendicular to the scattering area.

this error is now being worked out. The present results on linewidths are only semi-

quantitative.

These experiments were done in collaboration with R. Y. Chiao of the Optical Maser

Group, M. I. T., which is directed by Professor C. H. Townes and Professor A. Javan.

P. A. Fleury V
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