14,638 research outputs found

    Transform-limited pulses are not optimal for resonant multiphoton transitions

    Full text link
    Maximizing nonlinear light-matter interactions is a primary motive for compressing laser pulses to achieve ultrashort transform limited pulses. Here we show how, by appropriately shaping the pulses, resonant multiphoton transitions can be enhanced significantly beyond the level achieved by maximizing the pulse's peak intensity. We demonstrate the counterintuitive nature of this effect with an experiment in a resonant two-photon absorption, in which, by selectively removing certain spectral bands, the peak intensity of the pulse is reduced by a factor of 40, yet the absorption rate is doubled. Furthermore, by suitably designing the spectral phase of the pulse, we increase the absorption rate by a factor of 7.Comment: 4 pages, 3 figure

    Hadron Masses and Screening from AdS Wilson Loops

    Get PDF
    We show that in strongly coupled N=4 SYM the binding energy of a heavy and a light quark is independent of the strength of the coupling constant. As a consequence we are able to show that in the presence of light quarks the analog of the QCD string can snap and color charges are screened. The resulting neutral mesons interact with each other only via pion exchange and we estimate the massesComment: 4 pages, revte

    Fine-Structure FeII* Emission and Resonant MgII Emission in z = 1 Star-Forming Galaxies

    Full text link
    We present a study of the prevalence, strength, and kinematics of ultraviolet FeII and MgII emission lines in 212 star-forming galaxies at z = 1 selected from the DEEP2 survey. We find FeII* emission in composite spectra assembled on the basis of different galaxy properties, indicating that FeII* emission is prevalent at z = 1. In these composites, FeII* emission is observed at roughly the systemic velocity. At z = 1, we find that the strength of FeII* emission is most strongly modulated by dust attenuation, and is additionally correlated with redshift, star-formation rate, and [OII] equivalent width, such that systems at higher redshifts with lower dust levels, lower star-formation rates, and larger [OII] equivalent widths show stronger FeII* emission. We detect MgII emission in at least 15% of the individual spectra and we find that objects showing stronger MgII emission have higher specific star-formation rates, smaller [OII] linewidths, larger [OII] equivalent widths, lower dust attenuations, and lower stellar masses than the sample as a whole. MgII emission strength exhibits the strongest correlation with specific star-formation rate, although we find evidence that dust attenuation and stellar mass also play roles in the regulation of MgII emission. Future integral field unit observations of the spatial extent of FeII* and MgII emission in galaxies with high specific star-formation rates, low dust attenuations, and low stellar masses will be important for probing the morphology of circumgalactic gas.Comment: 29 pages, 22 figures, 2 tables; accepted to Ap

    Ultrafast electro-nuclear dynamics of H2 double ionization

    Get PDF
    The ultrafast electronic and nuclear dynamics of H2 laser-induced double ionization is studied using a time-dependent wave packet approach that goes beyond the fixed nuclei approximation. The double ionization pathways are analyzed by following the evolution of the total wave function during and after the pulse. The rescattering of the first ionized electron produces a coherent superposition of excited molecular states which presents a pronounced transient H+H- character. This attosecond excitation is followed by field-induced double ionization and by the formation of short-lived autoionizing states which decay via double ionization. These two double ionization mechanisms may be identified by their signature imprinted in the kinetic-energy distribution of the ejected protons

    ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON

    Full text link

    General Formalism for Evaluating the Impact of Phase Noise on Bloch Vector Rotations

    Full text link
    Quantum manipulation protocols for quantum sensors and quantum computation often require many single qubit rotations. However, the impact of phase noise in the field that performs the qubit rotations is often neglected or treated only for special cases. We present a general framework for calculating the impact of phase noise on the state of a qubit, as described by its equivalent Bloch vector. The analysis applies to any Bloch vector orientation, and any rotation axis azimuthal angle for both a single pulse, and pulse sequences. Experimental examples are presented for several special cases. We apply the analysis to commonly used composite π\pi-pulse sequences: CORPSE, SCROFULOUS, and BB1, used to suppress static amplitude and detuning errors, and also to spin echo sequences. We expect the formalism presented will help guide the development and evaluation of future quantum manipulation protocols.Comment: 12 pages, 6 figures, submitted to PR
    • …
    corecore