4,088 research outputs found
Maximizing Neumann fundamental tones of triangles
We prove sharp isoperimetric inequalities for Neumann eigenvalues of the
Laplacian on triangular domains.
The first nonzero Neumann eigenvalue is shown to be maximal for the
equilateral triangle among all triangles of given perimeter, and hence among
all triangles of given area. Similar results are proved for the harmonic and
arithmetic means of the first two nonzero eigenvalues
Ab initio study of canted magnetism of finite atomic chains at surfaces
By using ab initio methods on different levels we study the magnetic ground
state of (finite) atomic wires deposited on metallic surfaces. A
phenomenological model based on symmetry arguments suggests that the
magnetization of a ferromagnetic wire is aligned either normal to the wire and,
generally, tilted with respect to the surface normal or parallel to the wire.
From a first principles point of view, this simple model can be best related
to the so--called magnetic force theorem calculations being often used to
explore magnetic anisotropy energies of bulk and surface systems. The second
theoretical approach we use to search for the canted magnetic ground state is
first principles adiabatic spin dynamics extended to the case of fully
relativistic electron scattering. First, for the case of two adjacent Fe atoms
an a Cu(111) surface we demonstrate that the reduction of the surface symmetry
can indeed lead to canted magnetism. The anisotropy constants and consequently
the ground state magnetization direction are very sensitive to the position of
the dimer with respect to the surface. We also performed calculations for a
seven--atom Co chain placed along a step edge of a Pt(111) surface. As far as
the ground state spin orientation is concerned we obtain excellent agreement
with experiment. Moreover, the magnetic ground state turns out to be slightly
noncollinear.Comment: 8 pages, 5 figures; presented on the International Conference on
Nanospintronics Design and Realizations, Kyoto, Japan, May 2004; to appear in
J. Phys.: Cond. Matte
High Resolution Mid-Infrared Imaging of Ultraluminous Infrared Galaxies
Observations of ultraluminous infrared galaxies (ULIRGs) with an achieved
resolution approaching the diffraction limit in the mid-infrared from 8 - 25
m using the Keck Telescopes are reported. We find extremely compact
structures, with spatial scales of (diameter) in six of the seven
ULIRGs observed. These compact sources emit between 30% and 100% of the
mid-infrared energy from these galaxies. We have utilized the compact
mid-infrared structures as a diagnostic of whether an AGN or a compact (100 --
300 pc) starburst is the primary power source in these ULIRGs. In Markarian
231, the upper limit on the diameter of the 12.5 m source, 0.13, shows
that the size of the infrared source must increase with increasing wavelength,
consistent with AGN models. In IRAS 05189-2524 and IRAS 08572+3915 there is
strong evidence that the source size increases with increasing wavelength. This
suggests heating by a central source rather than an extended luminosity source,
consistent with the optical classification as an AGN. The compact mid-infrared
sources seen in the other galaxies cannot be used to distinguish the ultimate
luminosity source. If these ULIRGs are powered by compact starbursts, the star
formation rates seen in the central few hundred parsecs far exceed the global
rates seen in nearby starburst galaxies, and approach the surface brightness of
individual clusters in nearby starburst galaxies.Comment: 33pages, 6 tables, 5 figures, Accepted for publication in A
Specifying computer-supported collaboration scripts
Collaboration scripts are activity programs which aim to foster collaborative learning by structuring interaction between learners. Computer-supported collaboration scripts generally suffer from the problem of being restrained to a specific learning platform and learning context. A standardization of collaboration scripts first requires a specification of collaboration scripts that integrates multiple perspectives from computer science, education and psychology. So far, only few and limited attempts at such specifications have been made. This paper aims to consolidate and expand these approaches in light of recent findings and to propose a generic framework for the specification of collaboration scripts. The framework enables a description of collaboration scripts using a small number of components (participants, activities, roles, resources and groups) and mechanisms (task distribution, group formation and sequencing)
Structural Stability and Renormalization Group for Propagating Fronts
A solution to a given equation is structurally stable if it suffers only an
infinitesimal change when the equation (not the solution) is perturbed
infinitesimally. We have found that structural stability can be used as a
velocity selection principle for propagating fronts. We give examples, using
numerical and renormalization group methods.Comment: 14 pages, uiucmac.tex, no figure
Temporal Model Adaptation for Person Re-Identification
Person re-identification is an open and challenging problem in computer
vision. Majority of the efforts have been spent either to design the best
feature representation or to learn the optimal matching metric. Most approaches
have neglected the problem of adapting the selected features or the learned
model over time. To address such a problem, we propose a temporal model
adaptation scheme with human in the loop. We first introduce a
similarity-dissimilarity learning method which can be trained in an incremental
fashion by means of a stochastic alternating directions methods of multipliers
optimization procedure. Then, to achieve temporal adaptation with limited human
effort, we exploit a graph-based approach to present the user only the most
informative probe-gallery matches that should be used to update the model.
Results on three datasets have shown that our approach performs on par or even
better than state-of-the-art approaches while reducing the manual pairwise
labeling effort by about 80%
A remark on an overdetermined problem in Riemannian Geometry
Let be a Riemannian manifold with a distinguished point and
assume that the geodesic distance from is an isoparametric function.
Let be a bounded domain, with , and consider
the problem in with on ,
where is the -Laplacian of . We prove that if the normal
derivative of along the boundary of is a
function of satisfying suitable conditions, then must be a
geodesic ball. In particular, our result applies to open balls of
equipped with a rotationally symmetric metric of the form
, where is the standard metric of the sphere.Comment: 8 pages. This paper has been written for possible publication in a
special volume dedicated to the conference "Geometric Properties for
Parabolic and Elliptic PDE's. 4th Italian-Japanese Workshop", organized in
Palinuro in May 201
Hubble Space Telescope Images of Magellanic Cloud Planetary Nebulae: Data and Correlations across Morphological Classes
The morphology of planetary nebulae (PNe) provides an essential tool for
understanding their origin and evolution, as it reflects both the dynamics of
the gas ejected during the TP-AGB phase, and the central star energetics. Here
we study the morphology of 27 Magellanic Cloud planetary nebulae (MCPNe) and
present an analysis of their physical characteristics across morphological
classes. Similar studies have been successfully carried out for galactic PNe,
but were compromised by the uncertainty of individual PN distances. We present
our own HST/FOC images of 15 Magellanic Cloud PNe (MCPNe) acquired through a
narrow-band lambda 5007 [O III] filter. We use the Richardson-Lucy
deconvolution technique on these pre-COSTAR images to achieve post-COSTAR
quality. Three PNe imaged before and after COSTAR confirm the high reliability
of our deconvolution procedure. We derive morphological classes, dimensions,
and surface photometry for all these PNe. We have combined this sample with
HST/PC1 images of 15 MCPNe, three of which are in common with the FOC set,
acquired by Dopita et al. (1996), to obtain the largest MCPN sample ever
examined from the morphological viewpoint. By using the whole database,
supplemented with published data from the literature, we have analyzed the
properties of the MCPNe and compared them to a typical, complete galactic
sample. Morphology of the MCPNe is then correlated with PN density, chemistry,
and evolution.Comment: text file lstanghe_mcpn.tex (LaTex); Figures 2 through 10, Figure 5
is in 3 parts (a,b,c); Figure 1 available by regular mail only; ApJ, in
press, November 10, 199
Gap Formation in the Dust Layer of 3D Protoplanetary Disks
We numerically model the evolution of dust in a protoplanetary disk using a
two-phase (gas+dust) Smoothed Particle Hydrodynamics (SPH) code, which is
non-self-gravitating and locally isothermal. The code follows the three
dimensional distribution of dust in a protoplanetary disk as it interacts with
the gas via aerodynamic drag. In this work, we present the evolution of a disk
comprising 1% dust by mass in the presence of an embedded planet for two
different disk configurations: a small, minimum mass solar nebular (MMSN) disk
and a larger, more massive Classical T Tauri star (CTTS) disk. We then vary the
grain size and planetary mass to see how they effect the resulting disk
structure. We find that gap formation is much more rapid and striking in the
dust layer than in the gaseous disk and that a system with a given stellar,
disk and planetary mass will have a different appearance depending on the grain
size and that such differences will be detectable in the millimetre domain with
ALMA. For low mass planets in our MMSN models, a gap can open in the dust disk
while not in the gas disk. We also note that dust accumulates at the external
edge of the planetary gap and speculate that the presence of a planet in the
disk may facilitate the growth of planetesimals in this high density region.Comment: 5 page, 4 figures. Accepted for publication in Astrophysics & Space
Scienc
- …